Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves

A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2019-04, Vol.110, p.21-25
1. Verfasser: Núñez, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 21
container_title International journal of non-linear mechanics
container_volume 110
creator Núñez, Manuel
description A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory. •The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.
doi_str_mv 10.1016/j.ijnonlinmec.2019.01.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194573352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746218307261</els_id><sourcerecordid>2194573352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhS0EEqXwDkHMCdf5s81WVVCQKpUBZstxboujxA52WgQTr8Hr8SSkKgMj012-c47uR8glhYQCLa-bxDTW2dbYDnWSAhUJ0ASAHZEJ5YzHRZnxYzIBSCFmeZmekrMQGhizObAJeVygRa9a84F1tHrpvj-_QtSqt0jZOtqg63DwRkeuH4wON9Gs71uj1WCcDdHgok5tLA4uODtCb2qH4ZycrFUb8OL3Tsnz3e3T_D5erhYP89ky1lkuhrjiVDChONQ81VxwgSnUiokqK2pVIq1RAQOhK14Aag6q4roo1ipjpQZdQTYlV4fe3rvXLYZBNm7r7TgpUyrygmVZkY6UOFDauxA8rmXvTaf8u6Qg9wJlI_8IlHuBEqgcBY7Z-SGL4xs7g14GbdBqrI1HPcjamX-0_ABFMoF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194573352</pqid></control><display><type>article</type><title>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</title><source>Access via ScienceDirect (Elsevier)</source><creator>Núñez, Manuel</creator><creatorcontrib>Núñez, Manuel</creatorcontrib><description>A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory. •The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2019.01.007</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Electron inertia ; Fluid dynamics ; Hall current ; Magnetohydrodynamics ; Magnetosonic waves ; Nonlinear geometric optics ; Traveling waves</subject><ispartof>International journal of non-linear mechanics, 2019-04, Vol.110, p.21-25</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</citedby><cites>FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2019.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Núñez, Manuel</creatorcontrib><title>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</title><title>International journal of non-linear mechanics</title><description>A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory. •The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.</description><subject>Electron inertia</subject><subject>Fluid dynamics</subject><subject>Hall current</subject><subject>Magnetohydrodynamics</subject><subject>Magnetosonic waves</subject><subject>Nonlinear geometric optics</subject><subject>Traveling waves</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAUhS0EEqXwDkHMCdf5s81WVVCQKpUBZstxboujxA52WgQTr8Hr8SSkKgMj012-c47uR8glhYQCLa-bxDTW2dbYDnWSAhUJ0ASAHZEJ5YzHRZnxYzIBSCFmeZmekrMQGhizObAJeVygRa9a84F1tHrpvj-_QtSqt0jZOtqg63DwRkeuH4wON9Gs71uj1WCcDdHgok5tLA4uODtCb2qH4ZycrFUb8OL3Tsnz3e3T_D5erhYP89ky1lkuhrjiVDChONQ81VxwgSnUiokqK2pVIq1RAQOhK14Aag6q4roo1ipjpQZdQTYlV4fe3rvXLYZBNm7r7TgpUyrygmVZkY6UOFDauxA8rmXvTaf8u6Qg9wJlI_8IlHuBEqgcBY7Z-SGL4xs7g14GbdBqrI1HPcjamX-0_ABFMoF-</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Núñez, Manuel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201904</creationdate><title>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</title><author>Núñez, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electron inertia</topic><topic>Fluid dynamics</topic><topic>Hall current</topic><topic>Magnetohydrodynamics</topic><topic>Magnetosonic waves</topic><topic>Nonlinear geometric optics</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Núñez, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Núñez, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2019-04</date><risdate>2019</risdate><volume>110</volume><spage>21</spage><epage>25</epage><pages>21-25</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory. •The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2019.01.007</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2019-04, Vol.110, p.21-25
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_2194573352
source Access via ScienceDirect (Elsevier)
subjects Electron inertia
Fluid dynamics
Hall current
Magnetohydrodynamics
Magnetosonic waves
Nonlinear geometric optics
Traveling waves
title Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Ohm%E2%80%99s%20law%20and%20geometric%20optics:%20Applications%20to%20magnetosonic%20waves&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=N%C3%BA%C3%B1ez,%20Manuel&rft.date=2019-04&rft.volume=110&rft.spage=21&rft.epage=25&rft.pages=21-25&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2019.01.007&rft_dat=%3Cproquest_cross%3E2194573352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194573352&rft_id=info:pmid/&rft_els_id=S0020746218307261&rfr_iscdi=true