Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves
A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, wh...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2019-04, Vol.110, p.21-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | |
container_start_page | 21 |
container_title | International journal of non-linear mechanics |
container_volume | 110 |
creator | Núñez, Manuel |
description | A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory.
•The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas. |
doi_str_mv | 10.1016/j.ijnonlinmec.2019.01.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194573352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746218307261</els_id><sourcerecordid>2194573352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhS0EEqXwDkHMCdf5s81WVVCQKpUBZstxboujxA52WgQTr8Hr8SSkKgMj012-c47uR8glhYQCLa-bxDTW2dbYDnWSAhUJ0ASAHZEJ5YzHRZnxYzIBSCFmeZmekrMQGhizObAJeVygRa9a84F1tHrpvj-_QtSqt0jZOtqg63DwRkeuH4wON9Gs71uj1WCcDdHgok5tLA4uODtCb2qH4ZycrFUb8OL3Tsnz3e3T_D5erhYP89ky1lkuhrjiVDChONQ81VxwgSnUiokqK2pVIq1RAQOhK14Aag6q4roo1ipjpQZdQTYlV4fe3rvXLYZBNm7r7TgpUyrygmVZkY6UOFDauxA8rmXvTaf8u6Qg9wJlI_8IlHuBEqgcBY7Z-SGL4xs7g14GbdBqrI1HPcjamX-0_ABFMoF-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194573352</pqid></control><display><type>article</type><title>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</title><source>Access via ScienceDirect (Elsevier)</source><creator>Núñez, Manuel</creator><creatorcontrib>Núñez, Manuel</creatorcontrib><description>A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory.
•The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2019.01.007</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Electron inertia ; Fluid dynamics ; Hall current ; Magnetohydrodynamics ; Magnetosonic waves ; Nonlinear geometric optics ; Traveling waves</subject><ispartof>International journal of non-linear mechanics, 2019-04, Vol.110, p.21-25</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</citedby><cites>FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijnonlinmec.2019.01.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Núñez, Manuel</creatorcontrib><title>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</title><title>International journal of non-linear mechanics</title><description>A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory.
•The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.</description><subject>Electron inertia</subject><subject>Fluid dynamics</subject><subject>Hall current</subject><subject>Magnetohydrodynamics</subject><subject>Magnetosonic waves</subject><subject>Nonlinear geometric optics</subject><subject>Traveling waves</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkL1OwzAUhS0EEqXwDkHMCdf5s81WVVCQKpUBZstxboujxA52WgQTr8Hr8SSkKgMj012-c47uR8glhYQCLa-bxDTW2dbYDnWSAhUJ0ASAHZEJ5YzHRZnxYzIBSCFmeZmekrMQGhizObAJeVygRa9a84F1tHrpvj-_QtSqt0jZOtqg63DwRkeuH4wON9Gs71uj1WCcDdHgok5tLA4uODtCb2qH4ZycrFUb8OL3Tsnz3e3T_D5erhYP89ky1lkuhrjiVDChONQ81VxwgSnUiokqK2pVIq1RAQOhK14Aag6q4roo1ipjpQZdQTYlV4fe3rvXLYZBNm7r7TgpUyrygmVZkY6UOFDauxA8rmXvTaf8u6Qg9wJlI_8IlHuBEqgcBY7Z-SGL4xs7g14GbdBqrI1HPcjamX-0_ABFMoF-</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Núñez, Manuel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201904</creationdate><title>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</title><author>Núñez, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b81979a80d82c8989e20da79b35da6e1dea0709cb850ec80ab8c55fa376c0cb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electron inertia</topic><topic>Fluid dynamics</topic><topic>Hall current</topic><topic>Magnetohydrodynamics</topic><topic>Magnetosonic waves</topic><topic>Nonlinear geometric optics</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Núñez, Manuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Núñez, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2019-04</date><risdate>2019</risdate><volume>110</volume><spage>21</spage><epage>25</epage><pages>21-25</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>A geometric optics analysis on the magnetohydrodynamics equations is performed when diffusion, Hall current and electron inertia are added as perturbations of the appropriate order. The first order approximation yields a transport equation along the rays that is of Korteweg–de Vries–Burgers type, whose coefficients may be explicitly found in terms of the main quantities at the original equilibrium. Using known results on traveling wave solutions of this equation, and assuming that we start from a constant equilibrium, we are able to discern which ones among the plasma parameters determine the shape of shocks, either monotonic or oscillatory.
•The generalized Ohm’s law is studied using geometric optics methods.•The equation of magnetosonic waves is obtained.•This equation turns out to be of Korteweg–de Vries–Burgers type.•Its properties are studied and applied to real plasmas.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2019.01.007</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2019-04, Vol.110, p.21-25 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_2194573352 |
source | Access via ScienceDirect (Elsevier) |
subjects | Electron inertia Fluid dynamics Hall current Magnetohydrodynamics Magnetosonic waves Nonlinear geometric optics Traveling waves |
title | Generalized Ohm’s law and geometric optics: Applications to magnetosonic waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Ohm%E2%80%99s%20law%20and%20geometric%20optics:%20Applications%20to%20magnetosonic%20waves&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=N%C3%BA%C3%B1ez,%20Manuel&rft.date=2019-04&rft.volume=110&rft.spage=21&rft.epage=25&rft.pages=21-25&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2019.01.007&rft_dat=%3Cproquest_cross%3E2194573352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194573352&rft_id=info:pmid/&rft_els_id=S0020746218307261&rfr_iscdi=true |