Testing convexity of figures under the uniform distribution
We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ f...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-05, Vol.54 (3), p.413-443 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 443 |
---|---|
container_issue | 3 |
container_start_page | 413 |
container_title | Random structures & algorithms |
container_volume | 54 |
creator | Berman, Piotr Murzabulatov, Meiram Raskhodnikova, Sofya |
description | We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity.
We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set. |
doi_str_mv | 10.1002/rsa.20797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194474958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194474958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8iMTGkPZ-d2BZTVfElVUKC7lbi2sVVGxc7AfrvSQkr073D896dHkKuKUwoAE5jqiYIQokTMqKgZI6cytNj5pgryfCcXKS0AQDBkI3I3dKm1jfrzITm03779pAFlzm_7qJNWdesbMzad9sn70LcZSuf2ujrrvWhuSRnrtome_U3x2T5cL-cP-WLl8fn-WyRG8ZQ5IWSUhVc1uAqAdxawUq5okYqZ4HXKLDEwkisK6NKgApKYx3HsijB1LxgY3IzrN3H8NH17-pN6GLTX9RIFeeCq0L21O1AmRhSitbpffS7Kh40BX1Uo3s1-ldNz04H9stv7eF_UL--zYbGD_NjZHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194474958</pqid></control><display><type>article</type><title>Testing convexity of figures under the uniform distribution</title><source>Access via Wiley Online Library</source><creator>Berman, Piotr ; Murzabulatov, Meiram ; Raskhodnikova, Sofya</creator><creatorcontrib>Berman, Piotr ; Murzabulatov, Meiram ; Raskhodnikova, Sofya</creatorcontrib><description>We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity.
We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20797</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>2D geometry ; Algorithms ; Convex sets ; Convexity ; Lower bounds ; property testing ; randomized algorithms ; Run time (computers)</subject><ispartof>Random structures & algorithms, 2019-05, Vol.54 (3), p.413-443</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</citedby><cites>FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>Murzabulatov, Meiram</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><title>Testing convexity of figures under the uniform distribution</title><title>Random structures & algorithms</title><description>We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity.
We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.</description><subject>2D geometry</subject><subject>Algorithms</subject><subject>Convex sets</subject><subject>Convexity</subject><subject>Lower bounds</subject><subject>property testing</subject><subject>randomized algorithms</subject><subject>Run time (computers)</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8iMTGkPZ-d2BZTVfElVUKC7lbi2sVVGxc7AfrvSQkr073D896dHkKuKUwoAE5jqiYIQokTMqKgZI6cytNj5pgryfCcXKS0AQDBkI3I3dKm1jfrzITm03779pAFlzm_7qJNWdesbMzad9sn70LcZSuf2ujrrvWhuSRnrtome_U3x2T5cL-cP-WLl8fn-WyRG8ZQ5IWSUhVc1uAqAdxawUq5okYqZ4HXKLDEwkisK6NKgApKYx3HsijB1LxgY3IzrN3H8NH17-pN6GLTX9RIFeeCq0L21O1AmRhSitbpffS7Kh40BX1Uo3s1-ldNz04H9stv7eF_UL--zYbGD_NjZHs</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Berman, Piotr</creator><creator>Murzabulatov, Meiram</creator><creator>Raskhodnikova, Sofya</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201905</creationdate><title>Testing convexity of figures under the uniform distribution</title><author>Berman, Piotr ; Murzabulatov, Meiram ; Raskhodnikova, Sofya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D geometry</topic><topic>Algorithms</topic><topic>Convex sets</topic><topic>Convexity</topic><topic>Lower bounds</topic><topic>property testing</topic><topic>randomized algorithms</topic><topic>Run time (computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>Murzabulatov, Meiram</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berman, Piotr</au><au>Murzabulatov, Meiram</au><au>Raskhodnikova, Sofya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing convexity of figures under the uniform distribution</atitle><jtitle>Random structures & algorithms</jtitle><date>2019-05</date><risdate>2019</risdate><volume>54</volume><issue>3</issue><spage>413</spage><epage>443</epage><pages>413-443</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity.
We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.20797</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2019-05, Vol.54 (3), p.413-443 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2194474958 |
source | Access via Wiley Online Library |
subjects | 2D geometry Algorithms Convex sets Convexity Lower bounds property testing randomized algorithms Run time (computers) |
title | Testing convexity of figures under the uniform distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20convexity%20of%20figures%20under%20the%20uniform%20distribution&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Berman,%20Piotr&rft.date=2019-05&rft.volume=54&rft.issue=3&rft.spage=413&rft.epage=443&rft.pages=413-443&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20797&rft_dat=%3Cproquest_cross%3E2194474958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194474958&rft_id=info:pmid/&rfr_iscdi=true |