Testing convexity of figures under the uniform distribution

We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2019-05, Vol.54 (3), p.413-443
Hauptverfasser: Berman, Piotr, Murzabulatov, Meiram, Raskhodnikova, Sofya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 3
container_start_page 413
container_title Random structures & algorithms
container_volume 54
creator Berman, Piotr
Murzabulatov, Meiram
Raskhodnikova, Sofya
description We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity. We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.
doi_str_mv 10.1002/rsa.20797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194474958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194474958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8iMTGkPZ-d2BZTVfElVUKC7lbi2sVVGxc7AfrvSQkr073D896dHkKuKUwoAE5jqiYIQokTMqKgZI6cytNj5pgryfCcXKS0AQDBkI3I3dKm1jfrzITm03779pAFlzm_7qJNWdesbMzad9sn70LcZSuf2ujrrvWhuSRnrtome_U3x2T5cL-cP-WLl8fn-WyRG8ZQ5IWSUhVc1uAqAdxawUq5okYqZ4HXKLDEwkisK6NKgApKYx3HsijB1LxgY3IzrN3H8NH17-pN6GLTX9RIFeeCq0L21O1AmRhSitbpffS7Kh40BX1Uo3s1-ldNz04H9stv7eF_UL--zYbGD_NjZHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194474958</pqid></control><display><type>article</type><title>Testing convexity of figures under the uniform distribution</title><source>Access via Wiley Online Library</source><creator>Berman, Piotr ; Murzabulatov, Meiram ; Raskhodnikova, Sofya</creator><creatorcontrib>Berman, Piotr ; Murzabulatov, Meiram ; Raskhodnikova, Sofya</creatorcontrib><description>We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity. We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20797</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>2D geometry ; Algorithms ; Convex sets ; Convexity ; Lower bounds ; property testing ; randomized algorithms ; Run time (computers)</subject><ispartof>Random structures &amp; algorithms, 2019-05, Vol.54 (3), p.413-443</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</citedby><cites>FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>Murzabulatov, Meiram</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><title>Testing convexity of figures under the uniform distribution</title><title>Random structures &amp; algorithms</title><description>We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity. We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.</description><subject>2D geometry</subject><subject>Algorithms</subject><subject>Convex sets</subject><subject>Convexity</subject><subject>Lower bounds</subject><subject>property testing</subject><subject>randomized algorithms</subject><subject>Run time (computers)</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8iMTGkPZ-d2BZTVfElVUKC7lbi2sVVGxc7AfrvSQkr073D896dHkKuKUwoAE5jqiYIQokTMqKgZI6cytNj5pgryfCcXKS0AQDBkI3I3dKm1jfrzITm03779pAFlzm_7qJNWdesbMzad9sn70LcZSuf2ujrrvWhuSRnrtome_U3x2T5cL-cP-WLl8fn-WyRG8ZQ5IWSUhVc1uAqAdxawUq5okYqZ4HXKLDEwkisK6NKgApKYx3HsijB1LxgY3IzrN3H8NH17-pN6GLTX9RIFeeCq0L21O1AmRhSitbpffS7Kh40BX1Uo3s1-ldNz04H9stv7eF_UL--zYbGD_NjZHs</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Berman, Piotr</creator><creator>Murzabulatov, Meiram</creator><creator>Raskhodnikova, Sofya</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201905</creationdate><title>Testing convexity of figures under the uniform distribution</title><author>Berman, Piotr ; Murzabulatov, Meiram ; Raskhodnikova, Sofya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3327-59889548b0fa704ee7368d1c89fe04b272625c82bac9600a06cef426560cb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D geometry</topic><topic>Algorithms</topic><topic>Convex sets</topic><topic>Convexity</topic><topic>Lower bounds</topic><topic>property testing</topic><topic>randomized algorithms</topic><topic>Run time (computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berman, Piotr</creatorcontrib><creatorcontrib>Murzabulatov, Meiram</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berman, Piotr</au><au>Murzabulatov, Meiram</au><au>Raskhodnikova, Sofya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing convexity of figures under the uniform distribution</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2019-05</date><risdate>2019</risdate><volume>54</volume><issue>3</issue><spage>413</spage><epage>443</epage><pages>413-443</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We consider the following basic geometric problem: Given ϵ∈(0,1/2), a 2‐dimensional black‐and‐white figure is ∊‐ far from convex if it differs in at least an ∊ fraction of the area from every figure where the black object is convex. How many uniform and independent samples from a figure that is ∊‐ far from convex are needed to detect a violation of convexity with constant probability? This question arises in the context of designing property testers for convexity. We show that Θ(ϵ−4/3) uniform samples (and the same running time) are necessary and sufficient for detecting a violation of convexity in an ∊‐far figure and, equivalently, for testing convexity of figures with 1‐sided error. Our algorithm beats the Ω(ϵ−3/2) lower bound by Schmeltz [32] on the number of samples required for learning convex figures under the uniform distribution. It demonstrates that, with uniform samples, we can check if a set is approximately convex much faster than we can find an approximate representation of a convex set.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.20797</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2019-05, Vol.54 (3), p.413-443
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_2194474958
source Access via Wiley Online Library
subjects 2D geometry
Algorithms
Convex sets
Convexity
Lower bounds
property testing
randomized algorithms
Run time (computers)
title Testing convexity of figures under the uniform distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20convexity%20of%20figures%20under%20the%20uniform%20distribution&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Berman,%20Piotr&rft.date=2019-05&rft.volume=54&rft.issue=3&rft.spage=413&rft.epage=443&rft.pages=413-443&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20797&rft_dat=%3Cproquest_cross%3E2194474958%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194474958&rft_id=info:pmid/&rfr_iscdi=true