Performance Analysis and Enhancement of Deep Convolutional Neural Network

Convolutional neural network has been widely investigated for machinery condition monitoring, but its performance is highly affected by the learning of input signal representation and model structure. To address these issues, this paper presents a comprehensive deep convolutional neural network (DCN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Business & Information Systems Engineering 2019-06, Vol.61 (3), p.311-326
Hauptverfasser: Wang, Jinjiang, Ma, Yulin, Huang, Zuguang, Xue, Ruijuan, Zhao, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 3
container_start_page 311
container_title Business & Information Systems Engineering
container_volume 61
creator Wang, Jinjiang
Ma, Yulin
Huang, Zuguang
Xue, Ruijuan
Zhao, Rui
description Convolutional neural network has been widely investigated for machinery condition monitoring, but its performance is highly affected by the learning of input signal representation and model structure. To address these issues, this paper presents a comprehensive deep convolutional neural network (DCNN) based condition monitoring framework to improve model performance. First, various signal representation techniques are investigated for better feature learning of the DCNN model by transforming the time series signal into different domains, such as the frequency domain, the time-frequency domain, and the reconstructed phase space. Next, the DCNN model is customized by taking into account the dimension of model, the depth of layers, and the convolutional kernel functions. The model parameters are then optimized by a mini-batch stochastic gradient descendent algorithm. Experimental studies on a gearbox test rig are utilized to evaluate the effectiveness of presented DCNN models, and the results show that the one-dimensional DCNN model with a frequency domain input outperforms the others in terms of fault classification accuracy and computational efficiency. Finally, the guidelines for choosing appropriate signal representation techniques and DCNN model structures are comprehensively discussed for machinery condition monitoring.
doi_str_mv 10.1007/s12599-019-00593-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2194440350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717948232</galeid><sourcerecordid>A717948232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1480-535e2530a2bdc098bac88f23fca824eb8f463ecd8b287486d525c5966b9f11873</originalsourceid><addsrcrecordid>eNotjk9LAzEQxYMoWGq_gKeA5635u0mOpVYtFPWg55LNTnTrNqnJruK3N1pnGB689-MxCF1SMqeEqOtMmTSmIrQckYZX4gRNqK5VRRhhp2jCeM0rVbJzNMt5R8owY4xSE7R-guRj2tvgAC-C7b9zl7ENLV6Ft19zD2HA0eMbgANexvAZ-3HoYiHxA4zpT4avmN4v0Jm3fYbZv07Ry-3qeXlfbR7v1svFpnJUaFJJLoFJTixrWkeMbqzT2jPundVMQKO9qDm4VjdMK6HrVjLppKnrxnhKteJTdHXsPaT4MUIetrs4pvJP3jJqhBCES1Ko-ZF6tT1su-DjkKwr28K-czGA74q_UFQZoRln_AfveF8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194440350</pqid></control><display><type>article</type><title>Performance Analysis and Enhancement of Deep Convolutional Neural Network</title><source>Digital Commons Online Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Jinjiang ; Ma, Yulin ; Huang, Zuguang ; Xue, Ruijuan ; Zhao, Rui</creator><creatorcontrib>Wang, Jinjiang ; Ma, Yulin ; Huang, Zuguang ; Xue, Ruijuan ; Zhao, Rui</creatorcontrib><description>Convolutional neural network has been widely investigated for machinery condition monitoring, but its performance is highly affected by the learning of input signal representation and model structure. To address these issues, this paper presents a comprehensive deep convolutional neural network (DCNN) based condition monitoring framework to improve model performance. First, various signal representation techniques are investigated for better feature learning of the DCNN model by transforming the time series signal into different domains, such as the frequency domain, the time-frequency domain, and the reconstructed phase space. Next, the DCNN model is customized by taking into account the dimension of model, the depth of layers, and the convolutional kernel functions. The model parameters are then optimized by a mini-batch stochastic gradient descendent algorithm. Experimental studies on a gearbox test rig are utilized to evaluate the effectiveness of presented DCNN models, and the results show that the one-dimensional DCNN model with a frequency domain input outperforms the others in terms of fault classification accuracy and computational efficiency. Finally, the guidelines for choosing appropriate signal representation techniques and DCNN model structures are comprehensively discussed for machinery condition monitoring.</description><identifier>ISSN: 2363-7005</identifier><identifier>EISSN: 1867-0202</identifier><identifier>DOI: 10.1007/s12599-019-00593-4</identifier><language>eng</language><publisher>Berkeley: Springer</publisher><subject>Algorithms ; Analysis ; Artificial neural networks ; Computing time ; Frequency domain analysis ; Gearboxes ; Kernel functions ; Machinery ; Machinery and equipment ; Machinery condition monitoring ; Magneto-electric machines ; Neural networks ; Performance evaluation ; Representations</subject><ispartof>Business &amp; Information Systems Engineering, 2019-06, Vol.61 (3), p.311-326</ispartof><rights>COPYRIGHT 2019 Springer</rights><rights>Business &amp; Information Systems Engineering is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1480-535e2530a2bdc098bac88f23fca824eb8f463ecd8b287486d525c5966b9f11873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Jinjiang</creatorcontrib><creatorcontrib>Ma, Yulin</creatorcontrib><creatorcontrib>Huang, Zuguang</creatorcontrib><creatorcontrib>Xue, Ruijuan</creatorcontrib><creatorcontrib>Zhao, Rui</creatorcontrib><title>Performance Analysis and Enhancement of Deep Convolutional Neural Network</title><title>Business &amp; Information Systems Engineering</title><description>Convolutional neural network has been widely investigated for machinery condition monitoring, but its performance is highly affected by the learning of input signal representation and model structure. To address these issues, this paper presents a comprehensive deep convolutional neural network (DCNN) based condition monitoring framework to improve model performance. First, various signal representation techniques are investigated for better feature learning of the DCNN model by transforming the time series signal into different domains, such as the frequency domain, the time-frequency domain, and the reconstructed phase space. Next, the DCNN model is customized by taking into account the dimension of model, the depth of layers, and the convolutional kernel functions. The model parameters are then optimized by a mini-batch stochastic gradient descendent algorithm. Experimental studies on a gearbox test rig are utilized to evaluate the effectiveness of presented DCNN models, and the results show that the one-dimensional DCNN model with a frequency domain input outperforms the others in terms of fault classification accuracy and computational efficiency. Finally, the guidelines for choosing appropriate signal representation techniques and DCNN model structures are comprehensively discussed for machinery condition monitoring.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Computing time</subject><subject>Frequency domain analysis</subject><subject>Gearboxes</subject><subject>Kernel functions</subject><subject>Machinery</subject><subject>Machinery and equipment</subject><subject>Machinery condition monitoring</subject><subject>Magneto-electric machines</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Representations</subject><issn>2363-7005</issn><issn>1867-0202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjk9LAzEQxYMoWGq_gKeA5635u0mOpVYtFPWg55LNTnTrNqnJruK3N1pnGB689-MxCF1SMqeEqOtMmTSmIrQckYZX4gRNqK5VRRhhp2jCeM0rVbJzNMt5R8owY4xSE7R-guRj2tvgAC-C7b9zl7ENLV6Ft19zD2HA0eMbgANexvAZ-3HoYiHxA4zpT4avmN4v0Jm3fYbZv07Ry-3qeXlfbR7v1svFpnJUaFJJLoFJTixrWkeMbqzT2jPundVMQKO9qDm4VjdMK6HrVjLppKnrxnhKteJTdHXsPaT4MUIetrs4pvJP3jJqhBCES1Ko-ZF6tT1su-DjkKwr28K-czGA74q_UFQZoRln_AfveF8M</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Jinjiang</creator><creator>Ma, Yulin</creator><creator>Huang, Zuguang</creator><creator>Xue, Ruijuan</creator><creator>Zhao, Rui</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IAO</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20190601</creationdate><title>Performance Analysis and Enhancement of Deep Convolutional Neural Network</title><author>Wang, Jinjiang ; Ma, Yulin ; Huang, Zuguang ; Xue, Ruijuan ; Zhao, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1480-535e2530a2bdc098bac88f23fca824eb8f463ecd8b287486d525c5966b9f11873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Computing time</topic><topic>Frequency domain analysis</topic><topic>Gearboxes</topic><topic>Kernel functions</topic><topic>Machinery</topic><topic>Machinery and equipment</topic><topic>Machinery condition monitoring</topic><topic>Magneto-electric machines</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinjiang</creatorcontrib><creatorcontrib>Ma, Yulin</creatorcontrib><creatorcontrib>Huang, Zuguang</creatorcontrib><creatorcontrib>Xue, Ruijuan</creatorcontrib><creatorcontrib>Zhao, Rui</creatorcontrib><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Business &amp; Information Systems Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinjiang</au><au>Ma, Yulin</au><au>Huang, Zuguang</au><au>Xue, Ruijuan</au><au>Zhao, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Enhancement of Deep Convolutional Neural Network</atitle><jtitle>Business &amp; Information Systems Engineering</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>61</volume><issue>3</issue><spage>311</spage><epage>326</epage><pages>311-326</pages><issn>2363-7005</issn><eissn>1867-0202</eissn><abstract>Convolutional neural network has been widely investigated for machinery condition monitoring, but its performance is highly affected by the learning of input signal representation and model structure. To address these issues, this paper presents a comprehensive deep convolutional neural network (DCNN) based condition monitoring framework to improve model performance. First, various signal representation techniques are investigated for better feature learning of the DCNN model by transforming the time series signal into different domains, such as the frequency domain, the time-frequency domain, and the reconstructed phase space. Next, the DCNN model is customized by taking into account the dimension of model, the depth of layers, and the convolutional kernel functions. The model parameters are then optimized by a mini-batch stochastic gradient descendent algorithm. Experimental studies on a gearbox test rig are utilized to evaluate the effectiveness of presented DCNN models, and the results show that the one-dimensional DCNN model with a frequency domain input outperforms the others in terms of fault classification accuracy and computational efficiency. Finally, the guidelines for choosing appropriate signal representation techniques and DCNN model structures are comprehensively discussed for machinery condition monitoring.</abstract><cop>Berkeley</cop><pub>Springer</pub><doi>10.1007/s12599-019-00593-4</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2363-7005
ispartof Business & Information Systems Engineering, 2019-06, Vol.61 (3), p.311-326
issn 2363-7005
1867-0202
language eng
recordid cdi_proquest_journals_2194440350
source Digital Commons Online Journals; Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Artificial neural networks
Computing time
Frequency domain analysis
Gearboxes
Kernel functions
Machinery
Machinery and equipment
Machinery condition monitoring
Magneto-electric machines
Neural networks
Performance evaluation
Representations
title Performance Analysis and Enhancement of Deep Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Enhancement%20of%20Deep%20Convolutional%20Neural%20Network&rft.jtitle=Business%20&%20Information%20Systems%20Engineering&rft.au=Wang,%20Jinjiang&rft.date=2019-06-01&rft.volume=61&rft.issue=3&rft.spage=311&rft.epage=326&rft.pages=311-326&rft.issn=2363-7005&rft.eissn=1867-0202&rft_id=info:doi/10.1007/s12599-019-00593-4&rft_dat=%3Cgale_proqu%3EA717948232%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194440350&rft_id=info:pmid/&rft_galeid=A717948232&rfr_iscdi=true