Quantification of dopamine transporter binding using [ F]FP- -CIT and positron emission tomography

The purpose of this study was to compare different kinetic and semi-quantitative methods for analysing human [18F]FP-beta-CIT studies: plasma input models, simplified (SRTM) and full (FRTM) reference tissue models, standard uptake values (SUV) and SUV ratios (SUVr). Both simulations and clinical eva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2007-07, Vol.27 (7), p.1397-1406
Hauptverfasser: Yaqub, Maqsood, Boellaard, Ronald, Bart N M van Berckel, Ponsen, Mirthe M, Lubberink, Mark, Windhorst, Albert D, Berendse, Henk W, Lammertsma, Adriaan A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 7
container_start_page 1397
container_title Journal of cerebral blood flow and metabolism
container_volume 27
creator Yaqub, Maqsood
Boellaard, Ronald
Bart N M van Berckel
Ponsen, Mirthe M
Lubberink, Mark
Windhorst, Albert D
Berendse, Henk W
Lammertsma, Adriaan A
description The purpose of this study was to compare different kinetic and semi-quantitative methods for analysing human [18F]FP-beta-CIT studies: plasma input models, simplified (SRTM) and full (FRTM) reference tissue models, standard uptake values (SUV) and SUV ratios (SUVr). Both simulations and clinical evaluations were performed to determine the effects of noise, scan duration and blood volume on Akaike model selection, and on precision and accuracy of estimated parameters. For typical noise levels (COV approximately 2.5%) and scan durations (
doi_str_mv 10.1038/sj.jcbfm.9600439
format Article
fullrecord <record><control><sourceid>proquest_natur</sourceid><recordid>TN_cdi_proquest_journals_219433222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1294808321</sourcerecordid><originalsourceid>FETCH-LOGICAL-n492-3d3c8a71ebb6773a13181523baac78dee71f2e2b59875905378bd6a5ed1dadc33</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKt3L0LwvjUfzSZ7lGJroaBCD4LI8maTrVncZE2yh_57W9rLzGXmGRiE7imZUcLVU-pmXaPbflaVhMx5dYEmVIiqkISWl2hCmKRFKdXnNbpJqSOEKC7EBOmPEXx2rWsgu-BxaLEJA_TOW5wj-DSEmG3E2nnj_A6P6ahfePm9fC9wsVhvMXiDh5Bcjoe-7V1KR1AOfdhFGH72t-iqhd9k784-Rdvly3bxWmzeVuvF86bw84oV3PBGgaRW61JKDpRTRQXjGqCRylgracss06JSUlREcKm0KUFYQw2YhvMpejxhhxj-Rpty3YUx-sNizWg155wxdgg9nEIe8hhtPUTXQ9zX59P4PycyYnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219433222</pqid></control><display><type>article</type><title>Quantification of dopamine transporter binding using [ F]FP- -CIT and positron emission tomography</title><source>Access via SAGE</source><creator>Yaqub, Maqsood ; Boellaard, Ronald ; Bart N M van Berckel ; Ponsen, Mirthe M ; Lubberink, Mark ; Windhorst, Albert D ; Berendse, Henk W ; Lammertsma, Adriaan A</creator><creatorcontrib>Yaqub, Maqsood ; Boellaard, Ronald ; Bart N M van Berckel ; Ponsen, Mirthe M ; Lubberink, Mark ; Windhorst, Albert D ; Berendse, Henk W ; Lammertsma, Adriaan A</creatorcontrib><description>The purpose of this study was to compare different kinetic and semi-quantitative methods for analysing human [18F]FP-beta-CIT studies: plasma input models, simplified (SRTM) and full (FRTM) reference tissue models, standard uptake values (SUV) and SUV ratios (SUVr). Both simulations and clinical evaluations were performed to determine the effects of noise, scan duration and blood volume on Akaike model selection, and on precision and accuracy of estimated parameters. For typical noise levels (COV approximately 2.5%) and scan durations (&lt;90 mins), simulations provided poor fits (Akaike criterion) in case of reversible plasma input models showing a relatively high number of outliers compared with the two-tissue irreversible model. Reference tissue models provided more reliable fits, which were nearly independent of noise and scan duration. For clinical data, two tissue irreversible and reversible plasma input models fitted striatum curves equally well (Akaike criterion). BP with plasma input models were less precise and contained more outliers than BP obtained with SRTM or FRTM. Among all methods tested, SRTM showed the highest contrast between patients and controls. When differentiating between patients and controls, SUVr performed almost equally well as SRTM, although contrast between striatum and background was lower. In conclusion, SRTM provided BP estimates with the highest precision and accuracy. Moreover, SRTM provided good contrast between patients and controls, and between striatum and background. SRTM is therefore the method of choice for quantitative [18F]FP-beta-CIT studies. SUVr might be an alternative for larger clinical trials.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/sj.jcbfm.9600439</identifier><language>eng</language><publisher>London: Sage Publications Ltd</publisher><ispartof>Journal of cerebral blood flow and metabolism, 2007-07, Vol.27 (7), p.1397-1406</ispartof><rights>Copyright Nature Publishing Group Jul 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yaqub, Maqsood</creatorcontrib><creatorcontrib>Boellaard, Ronald</creatorcontrib><creatorcontrib>Bart N M van Berckel</creatorcontrib><creatorcontrib>Ponsen, Mirthe M</creatorcontrib><creatorcontrib>Lubberink, Mark</creatorcontrib><creatorcontrib>Windhorst, Albert D</creatorcontrib><creatorcontrib>Berendse, Henk W</creatorcontrib><creatorcontrib>Lammertsma, Adriaan A</creatorcontrib><title>Quantification of dopamine transporter binding using [ F]FP- -CIT and positron emission tomography</title><title>Journal of cerebral blood flow and metabolism</title><description>The purpose of this study was to compare different kinetic and semi-quantitative methods for analysing human [18F]FP-beta-CIT studies: plasma input models, simplified (SRTM) and full (FRTM) reference tissue models, standard uptake values (SUV) and SUV ratios (SUVr). Both simulations and clinical evaluations were performed to determine the effects of noise, scan duration and blood volume on Akaike model selection, and on precision and accuracy of estimated parameters. For typical noise levels (COV approximately 2.5%) and scan durations (&lt;90 mins), simulations provided poor fits (Akaike criterion) in case of reversible plasma input models showing a relatively high number of outliers compared with the two-tissue irreversible model. Reference tissue models provided more reliable fits, which were nearly independent of noise and scan duration. For clinical data, two tissue irreversible and reversible plasma input models fitted striatum curves equally well (Akaike criterion). BP with plasma input models were less precise and contained more outliers than BP obtained with SRTM or FRTM. Among all methods tested, SRTM showed the highest contrast between patients and controls. When differentiating between patients and controls, SUVr performed almost equally well as SRTM, although contrast between striatum and background was lower. In conclusion, SRTM provided BP estimates with the highest precision and accuracy. Moreover, SRTM provided good contrast between patients and controls, and between striatum and background. SRTM is therefore the method of choice for quantitative [18F]FP-beta-CIT studies. SUVr might be an alternative for larger clinical trials.</description><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE1LAzEYhIMoWKt3L0LwvjUfzSZ7lGJroaBCD4LI8maTrVncZE2yh_57W9rLzGXmGRiE7imZUcLVU-pmXaPbflaVhMx5dYEmVIiqkISWl2hCmKRFKdXnNbpJqSOEKC7EBOmPEXx2rWsgu-BxaLEJA_TOW5wj-DSEmG3E2nnj_A6P6ahfePm9fC9wsVhvMXiDh5Bcjoe-7V1KR1AOfdhFGH72t-iqhd9k784-Rdvly3bxWmzeVuvF86bw84oV3PBGgaRW61JKDpRTRQXjGqCRylgracss06JSUlREcKm0KUFYQw2YhvMpejxhhxj-Rpty3YUx-sNizWg155wxdgg9nEIe8hhtPUTXQ9zX59P4PycyYnk</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Yaqub, Maqsood</creator><creator>Boellaard, Ronald</creator><creator>Bart N M van Berckel</creator><creator>Ponsen, Mirthe M</creator><creator>Lubberink, Mark</creator><creator>Windhorst, Albert D</creator><creator>Berendse, Henk W</creator><creator>Lammertsma, Adriaan A</creator><general>Sage Publications Ltd</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>200707</creationdate><title>Quantification of dopamine transporter binding using [ F]FP- -CIT and positron emission tomography</title><author>Yaqub, Maqsood ; Boellaard, Ronald ; Bart N M van Berckel ; Ponsen, Mirthe M ; Lubberink, Mark ; Windhorst, Albert D ; Berendse, Henk W ; Lammertsma, Adriaan A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n492-3d3c8a71ebb6773a13181523baac78dee71f2e2b59875905378bd6a5ed1dadc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaqub, Maqsood</creatorcontrib><creatorcontrib>Boellaard, Ronald</creatorcontrib><creatorcontrib>Bart N M van Berckel</creatorcontrib><creatorcontrib>Ponsen, Mirthe M</creatorcontrib><creatorcontrib>Lubberink, Mark</creatorcontrib><creatorcontrib>Windhorst, Albert D</creatorcontrib><creatorcontrib>Berendse, Henk W</creatorcontrib><creatorcontrib>Lammertsma, Adriaan A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaqub, Maqsood</au><au>Boellaard, Ronald</au><au>Bart N M van Berckel</au><au>Ponsen, Mirthe M</au><au>Lubberink, Mark</au><au>Windhorst, Albert D</au><au>Berendse, Henk W</au><au>Lammertsma, Adriaan A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of dopamine transporter binding using [ F]FP- -CIT and positron emission tomography</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><date>2007-07</date><risdate>2007</risdate><volume>27</volume><issue>7</issue><spage>1397</spage><epage>1406</epage><pages>1397-1406</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>The purpose of this study was to compare different kinetic and semi-quantitative methods for analysing human [18F]FP-beta-CIT studies: plasma input models, simplified (SRTM) and full (FRTM) reference tissue models, standard uptake values (SUV) and SUV ratios (SUVr). Both simulations and clinical evaluations were performed to determine the effects of noise, scan duration and blood volume on Akaike model selection, and on precision and accuracy of estimated parameters. For typical noise levels (COV approximately 2.5%) and scan durations (&lt;90 mins), simulations provided poor fits (Akaike criterion) in case of reversible plasma input models showing a relatively high number of outliers compared with the two-tissue irreversible model. Reference tissue models provided more reliable fits, which were nearly independent of noise and scan duration. For clinical data, two tissue irreversible and reversible plasma input models fitted striatum curves equally well (Akaike criterion). BP with plasma input models were less precise and contained more outliers than BP obtained with SRTM or FRTM. Among all methods tested, SRTM showed the highest contrast between patients and controls. When differentiating between patients and controls, SUVr performed almost equally well as SRTM, although contrast between striatum and background was lower. In conclusion, SRTM provided BP estimates with the highest precision and accuracy. Moreover, SRTM provided good contrast between patients and controls, and between striatum and background. SRTM is therefore the method of choice for quantitative [18F]FP-beta-CIT studies. SUVr might be an alternative for larger clinical trials.</abstract><cop>London</cop><pub>Sage Publications Ltd</pub><doi>10.1038/sj.jcbfm.9600439</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2007-07, Vol.27 (7), p.1397-1406
issn 0271-678X
1559-7016
language eng
recordid cdi_proquest_journals_219433222
source Access via SAGE
title Quantification of dopamine transporter binding using [ F]FP- -CIT and positron emission tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_natur&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20dopamine%20transporter%20binding%20using%20%5B%20F%5DFP-%20-CIT%20and%20positron%20emission%20tomography&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Yaqub,%20Maqsood&rft.date=2007-07&rft.volume=27&rft.issue=7&rft.spage=1397&rft.epage=1406&rft.pages=1397-1406&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/sj.jcbfm.9600439&rft_dat=%3Cproquest_natur%3E1294808321%3C/proquest_natur%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219433222&rft_id=info:pmid/&rfr_iscdi=true