Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint

Global heat-flux measurements are performed using a newly developed temperature-sensitive paint (TSP) on an inclined ramp with sidewalls in a hypersonic shock tunnel. The paint response and image acquisition rate are sufficiently fast to allow flow phenomena on timescales of around 100 μ s to be res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2019-04, Vol.60 (4), p.1-16, Article 70
Hauptverfasser: Laurence, S. J., Ozawa, H., Martinez Schramm, J., Butler, C. S., Hannemann, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 4
container_start_page 1
container_title Experiments in fluids
container_volume 60
creator Laurence, S. J.
Ozawa, H.
Martinez Schramm, J.
Butler, C. S.
Hannemann, K.
description Global heat-flux measurements are performed using a newly developed temperature-sensitive paint (TSP) on an inclined ramp with sidewalls in a hypersonic shock tunnel. The paint response and image acquisition rate are sufficiently fast to allow flow phenomena on timescales of around 100 μ s to be resolved. Although a priori calibration of the new TSP proves inaccurate, in situ calibration allows the recovery of heat fluxes that agree well with embedded thermocouple measurements on both short and long timescales. At low unit Reynolds numbers, the flow on the main ramp surface is entirely laminar, but transition occurs in the corner-flow regions, causing a turbulent region to spread inwards from each sidewall and producing weak, unsteady features in the heat-flux distribution of the main laminar region. Within this laminar region, roughly steady streamwise streaks with a period of approximately ten times the boundary-layer thickness are also observed. At higher unit Reynolds numbers, the boundary layer on the main ramp surface transitions to turbulence. The fast-response TSP allows tracking of the time-resolved transition front: significant unsteadiness is observed, which appears to be only weakly correlated to unsteadiness in the freestream flow conditions. Based on the heat-flux signature in the transition region, the breakdown mechanism seems to be quite different from that observed in earlier measurements on a slender cone at similar conditions. Graphical abstract
doi_str_mv 10.1007/s00348-019-2711-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194242576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194242576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-1dabb2ee5325efda53bcdf96b103e813caa6f860ee2b69996fbd4259e3eaf17a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQR4MoWKsfwFvAczST7N-jFLVCwYueQ3Z3Urd0s2smK_bbG6ngydNc3vsNPMauQd6ClOUdSamzSkiohSoBRHXCFpBpJQAgO2ULWSotsqrIztkF0U5KyGtZLZhdo43C7ecvPqClOeCAPhIfPbf8_TBhoNH3Le_9HiMPdpj4TL3fcmcpioA0jZ6QRxwSamPyBaGnPvafyCfb-3jJzpzdE1793iV7e3x4Xa3F5uXpeXW_Ea3OdRTQ2aZRiLlWObrO5rppO1cXDUiNFejW2sJVhURUTVHXdeGaLlN5jRqtg9LqJbs57k5h_JiRotmNc_DppVFQZyrBZZEoOFJtGIkCOjOFfrDhYECan5LmWNKkkuanpKmSo44OJdZvMfwt_y99AxPweQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194242576</pqid></control><display><type>article</type><title>Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint</title><source>SpringerNature Journals</source><creator>Laurence, S. J. ; Ozawa, H. ; Martinez Schramm, J. ; Butler, C. S. ; Hannemann, K.</creator><creatorcontrib>Laurence, S. J. ; Ozawa, H. ; Martinez Schramm, J. ; Butler, C. S. ; Hannemann, K.</creatorcontrib><description>Global heat-flux measurements are performed using a newly developed temperature-sensitive paint (TSP) on an inclined ramp with sidewalls in a hypersonic shock tunnel. The paint response and image acquisition rate are sufficiently fast to allow flow phenomena on timescales of around 100 μ s to be resolved. Although a priori calibration of the new TSP proves inaccurate, in situ calibration allows the recovery of heat fluxes that agree well with embedded thermocouple measurements on both short and long timescales. At low unit Reynolds numbers, the flow on the main ramp surface is entirely laminar, but transition occurs in the corner-flow regions, causing a turbulent region to spread inwards from each sidewall and producing weak, unsteady features in the heat-flux distribution of the main laminar region. Within this laminar region, roughly steady streamwise streaks with a period of approximately ten times the boundary-layer thickness are also observed. At higher unit Reynolds numbers, the boundary layer on the main ramp surface transitions to turbulence. The fast-response TSP allows tracking of the time-resolved transition front: significant unsteadiness is observed, which appears to be only weakly correlated to unsteadiness in the freestream flow conditions. Based on the heat-flux signature in the transition region, the breakdown mechanism seems to be quite different from that observed in earlier measurements on a slender cone at similar conditions. Graphical abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-019-2711-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary layer transition ; Calibration ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid dynamics ; Fluid- and Aerodynamics ; Heat ; Heat and Mass Transfer ; Heat flux ; Heat recovery ; Hypersonic inlets ; Hypersonic shock ; Image acquisition ; Research Article ; Seismic engineering ; Shock tunnels ; Temperature-sensitive paints ; Thermocouples ; Thickness ; Tunnel construction ; Turbulence ; Turbulent flow</subject><ispartof>Experiments in fluids, 2019-04, Vol.60 (4), p.1-16, Article 70</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-1dabb2ee5325efda53bcdf96b103e813caa6f860ee2b69996fbd4259e3eaf17a3</citedby><cites>FETCH-LOGICAL-c353t-1dabb2ee5325efda53bcdf96b103e813caa6f860ee2b69996fbd4259e3eaf17a3</cites><orcidid>0000-0001-8760-8366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-019-2711-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-019-2711-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Laurence, S. J.</creatorcontrib><creatorcontrib>Ozawa, H.</creatorcontrib><creatorcontrib>Martinez Schramm, J.</creatorcontrib><creatorcontrib>Butler, C. S.</creatorcontrib><creatorcontrib>Hannemann, K.</creatorcontrib><title>Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Global heat-flux measurements are performed using a newly developed temperature-sensitive paint (TSP) on an inclined ramp with sidewalls in a hypersonic shock tunnel. The paint response and image acquisition rate are sufficiently fast to allow flow phenomena on timescales of around 100 μ s to be resolved. Although a priori calibration of the new TSP proves inaccurate, in situ calibration allows the recovery of heat fluxes that agree well with embedded thermocouple measurements on both short and long timescales. At low unit Reynolds numbers, the flow on the main ramp surface is entirely laminar, but transition occurs in the corner-flow regions, causing a turbulent region to spread inwards from each sidewall and producing weak, unsteady features in the heat-flux distribution of the main laminar region. Within this laminar region, roughly steady streamwise streaks with a period of approximately ten times the boundary-layer thickness are also observed. At higher unit Reynolds numbers, the boundary layer on the main ramp surface transitions to turbulence. The fast-response TSP allows tracking of the time-resolved transition front: significant unsteadiness is observed, which appears to be only weakly correlated to unsteadiness in the freestream flow conditions. Based on the heat-flux signature in the transition region, the breakdown mechanism seems to be quite different from that observed in earlier measurements on a slender cone at similar conditions. Graphical abstract</description><subject>Boundary layer transition</subject><subject>Calibration</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Heat recovery</subject><subject>Hypersonic inlets</subject><subject>Hypersonic shock</subject><subject>Image acquisition</subject><subject>Research Article</subject><subject>Seismic engineering</subject><subject>Shock tunnels</subject><subject>Temperature-sensitive paints</subject><subject>Thermocouples</subject><subject>Thickness</subject><subject>Tunnel construction</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQR4MoWKsfwFvAczST7N-jFLVCwYueQ3Z3Urd0s2smK_bbG6ngydNc3vsNPMauQd6ClOUdSamzSkiohSoBRHXCFpBpJQAgO2ULWSotsqrIztkF0U5KyGtZLZhdo43C7ecvPqClOeCAPhIfPbf8_TBhoNH3Le_9HiMPdpj4TL3fcmcpioA0jZ6QRxwSamPyBaGnPvafyCfb-3jJzpzdE1793iV7e3x4Xa3F5uXpeXW_Ea3OdRTQ2aZRiLlWObrO5rppO1cXDUiNFejW2sJVhURUTVHXdeGaLlN5jRqtg9LqJbs57k5h_JiRotmNc_DppVFQZyrBZZEoOFJtGIkCOjOFfrDhYECan5LmWNKkkuanpKmSo44OJdZvMfwt_y99AxPweQQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Laurence, S. J.</creator><creator>Ozawa, H.</creator><creator>Martinez Schramm, J.</creator><creator>Butler, C. S.</creator><creator>Hannemann, K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8760-8366</orcidid></search><sort><creationdate>20190401</creationdate><title>Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint</title><author>Laurence, S. J. ; Ozawa, H. ; Martinez Schramm, J. ; Butler, C. S. ; Hannemann, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-1dabb2ee5325efda53bcdf96b103e813caa6f860ee2b69996fbd4259e3eaf17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary layer transition</topic><topic>Calibration</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Heat recovery</topic><topic>Hypersonic inlets</topic><topic>Hypersonic shock</topic><topic>Image acquisition</topic><topic>Research Article</topic><topic>Seismic engineering</topic><topic>Shock tunnels</topic><topic>Temperature-sensitive paints</topic><topic>Thermocouples</topic><topic>Thickness</topic><topic>Tunnel construction</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laurence, S. J.</creatorcontrib><creatorcontrib>Ozawa, H.</creatorcontrib><creatorcontrib>Martinez Schramm, J.</creatorcontrib><creatorcontrib>Butler, C. S.</creatorcontrib><creatorcontrib>Hannemann, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laurence, S. J.</au><au>Ozawa, H.</au><au>Martinez Schramm, J.</au><au>Butler, C. S.</au><au>Hannemann, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>60</volume><issue>4</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>70</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>Global heat-flux measurements are performed using a newly developed temperature-sensitive paint (TSP) on an inclined ramp with sidewalls in a hypersonic shock tunnel. The paint response and image acquisition rate are sufficiently fast to allow flow phenomena on timescales of around 100 μ s to be resolved. Although a priori calibration of the new TSP proves inaccurate, in situ calibration allows the recovery of heat fluxes that agree well with embedded thermocouple measurements on both short and long timescales. At low unit Reynolds numbers, the flow on the main ramp surface is entirely laminar, but transition occurs in the corner-flow regions, causing a turbulent region to spread inwards from each sidewall and producing weak, unsteady features in the heat-flux distribution of the main laminar region. Within this laminar region, roughly steady streamwise streaks with a period of approximately ten times the boundary-layer thickness are also observed. At higher unit Reynolds numbers, the boundary layer on the main ramp surface transitions to turbulence. The fast-response TSP allows tracking of the time-resolved transition front: significant unsteadiness is observed, which appears to be only weakly correlated to unsteadiness in the freestream flow conditions. Based on the heat-flux signature in the transition region, the breakdown mechanism seems to be quite different from that observed in earlier measurements on a slender cone at similar conditions. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-019-2711-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8760-8366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2019-04, Vol.60 (4), p.1-16, Article 70
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2194242576
source SpringerNature Journals
subjects Boundary layer transition
Calibration
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid dynamics
Fluid- and Aerodynamics
Heat
Heat and Mass Transfer
Heat flux
Heat recovery
Hypersonic inlets
Hypersonic shock
Image acquisition
Research Article
Seismic engineering
Shock tunnels
Temperature-sensitive paints
Thermocouples
Thickness
Tunnel construction
Turbulence
Turbulent flow
title Heat-flux measurements on a hypersonic inlet ramp using fast-response temperature-sensitive paint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A10%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-flux%20measurements%20on%20a%20hypersonic%20inlet%20ramp%20using%20fast-response%20temperature-sensitive%20paint&rft.jtitle=Experiments%20in%20fluids&rft.au=Laurence,%20S.%20J.&rft.date=2019-04-01&rft.volume=60&rft.issue=4&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=70&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-019-2711-8&rft_dat=%3Cproquest_cross%3E2194242576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194242576&rft_id=info:pmid/&rfr_iscdi=true