Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors
We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these paramete...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2019-03, Vol.6 (1), p.94-103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | 1 |
container_start_page | 94 |
container_title | IEEE transactions on control of network systems |
container_volume | 6 |
creator | Saito, Hiroshi Honda, Hirotada |
description | We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object. |
doi_str_mv | 10.1109/TCNS.2018.2797807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2194173514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8268580</ieee_id><sourcerecordid>2194173514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r88dskqNYawtSD-o5ZLezNlYTm0SK3767KKWXmXnw3sD7IXRPyZBSop9Wk_flkBGqhkxqqYi8Qj3GmSiEkuT6332LBiltCSGUiVbzHrIzCHvI0dV47O3ulFzCocHTlN3eVm7n8qnTKxs3kPGi2kKd8fLTHgCvk_MbPA-1zS74Yu2_fPjx-NmlbH0NeAk-hZju0E1jdwkGl91H65fpavJazBezt8l4XtRM81w0nGmlBBdSNpyCVQLAlkIqCoxJweqK8lEpiBblh4aSkXYqWnGlBamYZbyPHs9_DzF8HyFlsw3H2HZKhlE9opILOmpd9OyqY0gpQmMOsW0aT4YS08E0HUzTwTQXmG3m4ZxxAPDnV6xUQhH-C90ZbzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194173514</pqid></control><display><type>article</type><title>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Saito, Hiroshi ; Honda, Hirotada</creator><creatorcontrib>Saito, Hiroshi ; Honda, Hirotada</creatorcontrib><description>We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2018.2797807</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binoculars ; Convexity ; Distance sensor ; Estimation ; geometric probability ; Geometry ; integral geometry ; Nondestructive testing ; Parameter estimation ; random placement ; Robot sensing systems ; sensor network ; Sensor systems ; Sensors ; Shape ; shape estimation ; unknown location ; Wireless sensor networks</subject><ispartof>IEEE transactions on control of network systems, 2019-03, Vol.6 (1), p.94-103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</citedby><cites>FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</cites><orcidid>0000-0002-0159-7545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8268580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8268580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saito, Hiroshi</creatorcontrib><creatorcontrib>Honda, Hirotada</creatorcontrib><title>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.</description><subject>Binoculars</subject><subject>Convexity</subject><subject>Distance sensor</subject><subject>Estimation</subject><subject>geometric probability</subject><subject>Geometry</subject><subject>integral geometry</subject><subject>Nondestructive testing</subject><subject>Parameter estimation</subject><subject>random placement</subject><subject>Robot sensing systems</subject><subject>sensor network</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Shape</subject><subject>shape estimation</subject><subject>unknown location</subject><subject>Wireless sensor networks</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r88dskqNYawtSD-o5ZLezNlYTm0SK3767KKWXmXnw3sD7IXRPyZBSop9Wk_flkBGqhkxqqYi8Qj3GmSiEkuT6332LBiltCSGUiVbzHrIzCHvI0dV47O3ulFzCocHTlN3eVm7n8qnTKxs3kPGi2kKd8fLTHgCvk_MbPA-1zS74Yu2_fPjx-NmlbH0NeAk-hZju0E1jdwkGl91H65fpavJazBezt8l4XtRM81w0nGmlBBdSNpyCVQLAlkIqCoxJweqK8lEpiBblh4aSkXYqWnGlBamYZbyPHs9_DzF8HyFlsw3H2HZKhlE9opILOmpd9OyqY0gpQmMOsW0aT4YS08E0HUzTwTQXmG3m4ZxxAPDnV6xUQhH-C90ZbzA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Saito, Hiroshi</creator><creator>Honda, Hirotada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0159-7545</orcidid></search><sort><creationdate>20190301</creationdate><title>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</title><author>Saito, Hiroshi ; Honda, Hirotada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binoculars</topic><topic>Convexity</topic><topic>Distance sensor</topic><topic>Estimation</topic><topic>geometric probability</topic><topic>Geometry</topic><topic>integral geometry</topic><topic>Nondestructive testing</topic><topic>Parameter estimation</topic><topic>random placement</topic><topic>Robot sensing systems</topic><topic>sensor network</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Shape</topic><topic>shape estimation</topic><topic>unknown location</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Hiroshi</creatorcontrib><creatorcontrib>Honda, Hirotada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saito, Hiroshi</au><au>Honda, Hirotada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>94</spage><epage>103</epage><pages>94-103</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2018.2797807</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0159-7545</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2019-03, Vol.6 (1), p.94-103 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_proquest_journals_2194173514 |
source | IEEE Electronic Library (IEL) |
subjects | Binoculars Convexity Distance sensor Estimation geometric probability Geometry integral geometry Nondestructive testing Parameter estimation random placement Robot sensing systems sensor network Sensor systems Sensors Shape shape estimation unknown location Wireless sensor networks |
title | Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Analysis%20of%20Estimability%20of%20Target%20Object%20Shape%20Using%20Location-Unknown%20Distance%20Sensors&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Saito,%20Hiroshi&rft.date=2019-03-01&rft.volume=6&rft.issue=1&rft.spage=94&rft.epage=103&rft.pages=94-103&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2018.2797807&rft_dat=%3Cproquest_RIE%3E2194173514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194173514&rft_id=info:pmid/&rft_ieee_id=8268580&rfr_iscdi=true |