Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors

We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2019-03, Vol.6 (1), p.94-103
Hauptverfasser: Saito, Hiroshi, Honda, Hirotada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 94
container_title IEEE transactions on control of network systems
container_volume 6
creator Saito, Hiroshi
Honda, Hirotada
description We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.
doi_str_mv 10.1109/TCNS.2018.2797807
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2194173514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8268580</ieee_id><sourcerecordid>2194173514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r88dskqNYawtSD-o5ZLezNlYTm0SK3767KKWXmXnw3sD7IXRPyZBSop9Wk_flkBGqhkxqqYi8Qj3GmSiEkuT6332LBiltCSGUiVbzHrIzCHvI0dV47O3ulFzCocHTlN3eVm7n8qnTKxs3kPGi2kKd8fLTHgCvk_MbPA-1zS74Yu2_fPjx-NmlbH0NeAk-hZju0E1jdwkGl91H65fpavJazBezt8l4XtRM81w0nGmlBBdSNpyCVQLAlkIqCoxJweqK8lEpiBblh4aSkXYqWnGlBamYZbyPHs9_DzF8HyFlsw3H2HZKhlE9opILOmpd9OyqY0gpQmMOsW0aT4YS08E0HUzTwTQXmG3m4ZxxAPDnV6xUQhH-C90ZbzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194173514</pqid></control><display><type>article</type><title>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Saito, Hiroshi ; Honda, Hirotada</creator><creatorcontrib>Saito, Hiroshi ; Honda, Hirotada</creatorcontrib><description>We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2018.2797807</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binoculars ; Convexity ; Distance sensor ; Estimation ; geometric probability ; Geometry ; integral geometry ; Nondestructive testing ; Parameter estimation ; random placement ; Robot sensing systems ; sensor network ; Sensor systems ; Sensors ; Shape ; shape estimation ; unknown location ; Wireless sensor networks</subject><ispartof>IEEE transactions on control of network systems, 2019-03, Vol.6 (1), p.94-103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</citedby><cites>FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</cites><orcidid>0000-0002-0159-7545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8268580$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8268580$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saito, Hiroshi</creatorcontrib><creatorcontrib>Honda, Hirotada</creatorcontrib><title>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.</description><subject>Binoculars</subject><subject>Convexity</subject><subject>Distance sensor</subject><subject>Estimation</subject><subject>geometric probability</subject><subject>Geometry</subject><subject>integral geometry</subject><subject>Nondestructive testing</subject><subject>Parameter estimation</subject><subject>random placement</subject><subject>Robot sensing systems</subject><subject>sensor network</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Shape</subject><subject>shape estimation</subject><subject>unknown location</subject><subject>Wireless sensor networks</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9rAjEQxUNpoWL9AKWXQM9r88dskqNYawtSD-o5ZLezNlYTm0SK3767KKWXmXnw3sD7IXRPyZBSop9Wk_flkBGqhkxqqYi8Qj3GmSiEkuT6332LBiltCSGUiVbzHrIzCHvI0dV47O3ulFzCocHTlN3eVm7n8qnTKxs3kPGi2kKd8fLTHgCvk_MbPA-1zS74Yu2_fPjx-NmlbH0NeAk-hZju0E1jdwkGl91H65fpavJazBezt8l4XtRM81w0nGmlBBdSNpyCVQLAlkIqCoxJweqK8lEpiBblh4aSkXYqWnGlBamYZbyPHs9_DzF8HyFlsw3H2HZKhlE9opILOmpd9OyqY0gpQmMOsW0aT4YS08E0HUzTwTQXmG3m4ZxxAPDnV6xUQhH-C90ZbzA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Saito, Hiroshi</creator><creator>Honda, Hirotada</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0159-7545</orcidid></search><sort><creationdate>20190301</creationdate><title>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</title><author>Saito, Hiroshi ; Honda, Hirotada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f3298853577f31ea85eea65781e22752cb134650956d9e620d9e81b38950b2a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Binoculars</topic><topic>Convexity</topic><topic>Distance sensor</topic><topic>Estimation</topic><topic>geometric probability</topic><topic>Geometry</topic><topic>integral geometry</topic><topic>Nondestructive testing</topic><topic>Parameter estimation</topic><topic>random placement</topic><topic>Robot sensing systems</topic><topic>sensor network</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Shape</topic><topic>shape estimation</topic><topic>unknown location</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, Hiroshi</creatorcontrib><creatorcontrib>Honda, Hirotada</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saito, Hiroshi</au><au>Honda, Hirotada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>94</spage><epage>103</epage><pages>94-103</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>We geometrically analyze the problem of estimating parameters related to the shape and size of a 2-D target object on the plane by using randomly distributed distance sensors whose locations are unknown. Based on the analysis using geometric probability, we discuss the estimability of these parameters: which parameters we can estimate and what conditions are required to estimate them. For a convex target object, its size and perimeter length can be estimated, and other parameters cannot be estimated. For a general polygon target object, convexity, in addition to its size and perimeter length, can be estimated. Parameters related to a concave vertex can be estimated when some conditions are satisfied. We also propose a method for estimating the convexity of a target object and the perimeter length of the target object.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCNS.2018.2797807</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0159-7545</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2019-03, Vol.6 (1), p.94-103
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_proquest_journals_2194173514
source IEEE Electronic Library (IEL)
subjects Binoculars
Convexity
Distance sensor
Estimation
geometric probability
Geometry
integral geometry
Nondestructive testing
Parameter estimation
random placement
Robot sensing systems
sensor network
Sensor systems
Sensors
Shape
shape estimation
unknown location
Wireless sensor networks
title Geometric Analysis of Estimability of Target Object Shape Using Location-Unknown Distance Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Analysis%20of%20Estimability%20of%20Target%20Object%20Shape%20Using%20Location-Unknown%20Distance%20Sensors&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Saito,%20Hiroshi&rft.date=2019-03-01&rft.volume=6&rft.issue=1&rft.spage=94&rft.epage=103&rft.pages=94-103&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2018.2797807&rft_dat=%3Cproquest_RIE%3E2194173514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194173514&rft_id=info:pmid/&rft_ieee_id=8268580&rfr_iscdi=true