Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells

Substitution of Pb2+ sites with smaller isovalent ions has been regarded as an effective strategy to optimize the crystal lattice of organic–inorganic hybrid perovskites such as releasing lattice strain, increasing the formation energy of vacancies and tuning the bandgap energy distribution. We repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (12), p.6877-6882
Hauptverfasser: Zhao, Yuanyuan, Wang, Yudi, Duan, Jialong, Yang, Xiya, Tang, Qunwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6882
container_issue 12
container_start_page 6877
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Zhao, Yuanyuan
Wang, Yudi
Duan, Jialong
Yang, Xiya
Tang, Qunwei
description Substitution of Pb2+ sites with smaller isovalent ions has been regarded as an effective strategy to optimize the crystal lattice of organic–inorganic hybrid perovskites such as releasing lattice strain, increasing the formation energy of vacancies and tuning the bandgap energy distribution. We report here the compositional engineering of the inorganic CsPbBr3 perovskite by doping divalent hard Lewis acids (Mg2+, Ca2+, Sr2+ and Ba2+) and their application in all-inorganic perovskite solar cells free of hole transporting layers and precious metal electrodes. By optimizing the doping dosage, a maximal power conversion efficiency as high as 9.63% is achieved for a CsPb0.97Sr0.03Br3 based photovoltaic device, mainly attributed to the enlarged grain sizes and suppressed formation of point defect (vacancies) within perovskite films, therefore reducing the photocurrent loss within modules. Furthermore, the unencapsulated Sr-containing solar cell shows ultrastability comparable to that of state-of-the-art CsPbBr3 perovskite solar cells under persistent attack in 80% relative humidity over 800 h. The increased efficiency and improved stability demonstrate all-inorganic perovskite solar cells with divalent hard Lewis acid doped CsPbBr3 perovskites to be a new frontier for thin-film photovoltaics.
doi_str_mv 10.1039/c9ta00761j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2193688499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193688499</sourcerecordid><originalsourceid>FETCH-LOGICAL-g286t-e0ac6983c39cf5efa053f45d9c7770c13239f041ec9d4ccc66a9dc0db04915123</originalsourceid><addsrcrecordid>eNo9jc1KAzEURoMoWGo3PkFAXE69mcxkcpdaf6GgC12X9CapqXFSk2mLb29B8ducszofY-cCpgIkXhEOBqBTYn3ERjW0UHUNquN_1_qUTUpZw2EaQCGO2P427Ex0_cDfTbZ87vahcEPBcps2zvJZeVneZMl9iJ-F-5Q5TpW8rJz3gYLr6Zub3vJtHLKpymCW0XETYxX6lFemD8Q3Lqdd-QiD4yVFkzm5GMsZO_EmFjf545i93d-9zh6r-fPD0-x6Xq1qrYbKgSGFWpJE8q3zBlrpm9YidV0HJGQt0UMjHKFtiEgpg5bALqFB0YpajtnFb3eT09fWlWGxTtvcHy4XtUCptG4Q5Q8B5F57</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193688499</pqid></control><display><type>article</type><title>Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhao, Yuanyuan ; Wang, Yudi ; Duan, Jialong ; Yang, Xiya ; Tang, Qunwei</creator><creatorcontrib>Zhao, Yuanyuan ; Wang, Yudi ; Duan, Jialong ; Yang, Xiya ; Tang, Qunwei</creatorcontrib><description>Substitution of Pb2+ sites with smaller isovalent ions has been regarded as an effective strategy to optimize the crystal lattice of organic–inorganic hybrid perovskites such as releasing lattice strain, increasing the formation energy of vacancies and tuning the bandgap energy distribution. We report here the compositional engineering of the inorganic CsPbBr3 perovskite by doping divalent hard Lewis acids (Mg2+, Ca2+, Sr2+ and Ba2+) and their application in all-inorganic perovskite solar cells free of hole transporting layers and precious metal electrodes. By optimizing the doping dosage, a maximal power conversion efficiency as high as 9.63% is achieved for a CsPb0.97Sr0.03Br3 based photovoltaic device, mainly attributed to the enlarged grain sizes and suppressed formation of point defect (vacancies) within perovskite films, therefore reducing the photocurrent loss within modules. Furthermore, the unencapsulated Sr-containing solar cell shows ultrastability comparable to that of state-of-the-art CsPbBr3 perovskite solar cells under persistent attack in 80% relative humidity over 800 h. The increased efficiency and improved stability demonstrate all-inorganic perovskite solar cells with divalent hard Lewis acid doped CsPbBr3 perovskites to be a new frontier for thin-film photovoltaics.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta00761j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Calcium ; Calcium ions ; Crystal lattices ; Doping ; Efficiency ; Energy conversion efficiency ; Energy distribution ; Free energy ; Heat of formation ; Lattice strain ; Lattice vacancies ; Lead ; Lewis acid ; Magnesium ; Optimization ; Perovskites ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Photovoltaics ; Point defects ; Relative humidity ; Solar cells ; Strontium ; Thin films</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (12), p.6877-6882</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Yudi</creatorcontrib><creatorcontrib>Duan, Jialong</creatorcontrib><creatorcontrib>Yang, Xiya</creatorcontrib><creatorcontrib>Tang, Qunwei</creatorcontrib><title>Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Substitution of Pb2+ sites with smaller isovalent ions has been regarded as an effective strategy to optimize the crystal lattice of organic–inorganic hybrid perovskites such as releasing lattice strain, increasing the formation energy of vacancies and tuning the bandgap energy distribution. We report here the compositional engineering of the inorganic CsPbBr3 perovskite by doping divalent hard Lewis acids (Mg2+, Ca2+, Sr2+ and Ba2+) and their application in all-inorganic perovskite solar cells free of hole transporting layers and precious metal electrodes. By optimizing the doping dosage, a maximal power conversion efficiency as high as 9.63% is achieved for a CsPb0.97Sr0.03Br3 based photovoltaic device, mainly attributed to the enlarged grain sizes and suppressed formation of point defect (vacancies) within perovskite films, therefore reducing the photocurrent loss within modules. Furthermore, the unencapsulated Sr-containing solar cell shows ultrastability comparable to that of state-of-the-art CsPbBr3 perovskite solar cells under persistent attack in 80% relative humidity over 800 h. The increased efficiency and improved stability demonstrate all-inorganic perovskite solar cells with divalent hard Lewis acid doped CsPbBr3 perovskites to be a new frontier for thin-film photovoltaics.</description><subject>Calcium</subject><subject>Calcium ions</subject><subject>Crystal lattices</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy distribution</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Lattice strain</subject><subject>Lattice vacancies</subject><subject>Lead</subject><subject>Lewis acid</subject><subject>Magnesium</subject><subject>Optimization</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Point defects</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Strontium</subject><subject>Thin films</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9jc1KAzEURoMoWGo3PkFAXE69mcxkcpdaf6GgC12X9CapqXFSk2mLb29B8ducszofY-cCpgIkXhEOBqBTYn3ERjW0UHUNquN_1_qUTUpZw2EaQCGO2P427Ex0_cDfTbZ87vahcEPBcps2zvJZeVneZMl9iJ-F-5Q5TpW8rJz3gYLr6Zub3vJtHLKpymCW0XETYxX6lFemD8Q3Lqdd-QiD4yVFkzm5GMsZO_EmFjf545i93d-9zh6r-fPD0-x6Xq1qrYbKgSGFWpJE8q3zBlrpm9YidV0HJGQt0UMjHKFtiEgpg5bALqFB0YpajtnFb3eT09fWlWGxTtvcHy4XtUCptG4Q5Q8B5F57</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhao, Yuanyuan</creator><creator>Wang, Yudi</creator><creator>Duan, Jialong</creator><creator>Yang, Xiya</creator><creator>Tang, Qunwei</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells</title><author>Zhao, Yuanyuan ; Wang, Yudi ; Duan, Jialong ; Yang, Xiya ; Tang, Qunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g286t-e0ac6983c39cf5efa053f45d9c7770c13239f041ec9d4ccc66a9dc0db04915123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Calcium</topic><topic>Calcium ions</topic><topic>Crystal lattices</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy distribution</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Lattice strain</topic><topic>Lattice vacancies</topic><topic>Lead</topic><topic>Lewis acid</topic><topic>Magnesium</topic><topic>Optimization</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Point defects</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Strontium</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Yudi</creatorcontrib><creatorcontrib>Duan, Jialong</creatorcontrib><creatorcontrib>Yang, Xiya</creatorcontrib><creatorcontrib>Tang, Qunwei</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yuanyuan</au><au>Wang, Yudi</au><au>Duan, Jialong</au><au>Yang, Xiya</au><au>Tang, Qunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>12</issue><spage>6877</spage><epage>6882</epage><pages>6877-6882</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Substitution of Pb2+ sites with smaller isovalent ions has been regarded as an effective strategy to optimize the crystal lattice of organic–inorganic hybrid perovskites such as releasing lattice strain, increasing the formation energy of vacancies and tuning the bandgap energy distribution. We report here the compositional engineering of the inorganic CsPbBr3 perovskite by doping divalent hard Lewis acids (Mg2+, Ca2+, Sr2+ and Ba2+) and their application in all-inorganic perovskite solar cells free of hole transporting layers and precious metal electrodes. By optimizing the doping dosage, a maximal power conversion efficiency as high as 9.63% is achieved for a CsPb0.97Sr0.03Br3 based photovoltaic device, mainly attributed to the enlarged grain sizes and suppressed formation of point defect (vacancies) within perovskite films, therefore reducing the photocurrent loss within modules. Furthermore, the unencapsulated Sr-containing solar cell shows ultrastability comparable to that of state-of-the-art CsPbBr3 perovskite solar cells under persistent attack in 80% relative humidity over 800 h. The increased efficiency and improved stability demonstrate all-inorganic perovskite solar cells with divalent hard Lewis acid doped CsPbBr3 perovskites to be a new frontier for thin-film photovoltaics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta00761j</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (12), p.6877-6882
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2193688499
source Royal Society Of Chemistry Journals 2008-
subjects Calcium
Calcium ions
Crystal lattices
Doping
Efficiency
Energy conversion efficiency
Energy distribution
Free energy
Heat of formation
Lattice strain
Lattice vacancies
Lead
Lewis acid
Magnesium
Optimization
Perovskites
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Photovoltaics
Point defects
Relative humidity
Solar cells
Strontium
Thin films
title Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divalent%20hard%20Lewis%20acid%20doped%20CsPbBr3%20films%20for%209.63%25-efficiency%20and%20ultra-stable%20all-inorganic%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhao,%20Yuanyuan&rft.date=2019&rft.volume=7&rft.issue=12&rft.spage=6877&rft.epage=6882&rft.pages=6877-6882&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta00761j&rft_dat=%3Cproquest%3E2193688499%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193688499&rft_id=info:pmid/&rfr_iscdi=true