An efficient phase-field model for fatigue fracture in ductile materials

Fatigue fracture in ductile materials, e. g. metals, is caused by cyclic plasticity. Especially regarding the high numbers of load cycles, plastic material models resolving the full loading path are computationally very demanding. Herein, a model with particularly small computational effort is prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Seiler, Martha, Linse, Thomas, Hantschke, Peter, Kästner, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Seiler, Martha
Linse, Thomas
Hantschke, Peter
Kästner, Markus
description Fatigue fracture in ductile materials, e. g. metals, is caused by cyclic plasticity. Especially regarding the high numbers of load cycles, plastic material models resolving the full loading path are computationally very demanding. Herein, a model with particularly small computational effort is presented. It provides a macroscopic, phenomenological description of fatigue fracture by combining the phase-field method for brittle fracture with a classic durability concept. A local lifetime variable is obtained, which degrades the fracture resistance progressively. By deriving the stress-strain path from cyclic material characteristics, only one increment per load cycle is needed at maximum. The model allows to describe fatigue crack initiation, propagation and residual fracture and can reproduce Paris behaviour.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2193411988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193411988</sourcerecordid><originalsourceid>FETCH-proquest_journals_21934119883</originalsourceid><addsrcrecordid>eNqNyk0OgjAQQOHGxESi3GES1yS0BYWlMRoO4J40MIMlpcX-3F8WHsDVt3hvxzIhJS-aSogDy0OYy7IUl6uoa5mx7mYBifSg0UZY3ypgQRrNCIsb0QA5D6SinhICeTXE5BG0hTENURuERUX0WplwYnvawPznkZ2fj9e9K1bvPglD7GeXvN1SL3grK87bppH_XV8vhjwD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193411988</pqid></control><display><type>article</type><title>An efficient phase-field model for fatigue fracture in ductile materials</title><source>Free E- Journals</source><creator>Seiler, Martha ; Linse, Thomas ; Hantschke, Peter ; Kästner, Markus</creator><creatorcontrib>Seiler, Martha ; Linse, Thomas ; Hantschke, Peter ; Kästner, Markus</creatorcontrib><description>Fatigue fracture in ductile materials, e. g. metals, is caused by cyclic plasticity. Especially regarding the high numbers of load cycles, plastic material models resolving the full loading path are computationally very demanding. Herein, a model with particularly small computational effort is presented. It provides a macroscopic, phenomenological description of fatigue fracture by combining the phase-field method for brittle fracture with a classic durability concept. A local lifetime variable is obtained, which degrades the fracture resistance progressively. By deriving the stress-strain path from cyclic material characteristics, only one increment per load cycle is needed at maximum. The model allows to describe fatigue crack initiation, propagation and residual fracture and can reproduce Paris behaviour.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crack initiation ; Crack propagation ; Cyclic loads ; Ductile fracture ; Fatigue failure ; Fracture mechanics ; Fracture toughness</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Seiler, Martha</creatorcontrib><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Hantschke, Peter</creatorcontrib><creatorcontrib>Kästner, Markus</creatorcontrib><title>An efficient phase-field model for fatigue fracture in ductile materials</title><title>arXiv.org</title><description>Fatigue fracture in ductile materials, e. g. metals, is caused by cyclic plasticity. Especially regarding the high numbers of load cycles, plastic material models resolving the full loading path are computationally very demanding. Herein, a model with particularly small computational effort is presented. It provides a macroscopic, phenomenological description of fatigue fracture by combining the phase-field method for brittle fracture with a classic durability concept. A local lifetime variable is obtained, which degrades the fracture resistance progressively. By deriving the stress-strain path from cyclic material characteristics, only one increment per load cycle is needed at maximum. The model allows to describe fatigue crack initiation, propagation and residual fracture and can reproduce Paris behaviour.</description><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>Ductile fracture</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0OgjAQQOHGxESi3GES1yS0BYWlMRoO4J40MIMlpcX-3F8WHsDVt3hvxzIhJS-aSogDy0OYy7IUl6uoa5mx7mYBifSg0UZY3ypgQRrNCIsb0QA5D6SinhICeTXE5BG0hTENURuERUX0WplwYnvawPznkZ2fj9e9K1bvPglD7GeXvN1SL3grK87bppH_XV8vhjwD</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Seiler, Martha</creator><creator>Linse, Thomas</creator><creator>Hantschke, Peter</creator><creator>Kästner, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191023</creationdate><title>An efficient phase-field model for fatigue fracture in ductile materials</title><author>Seiler, Martha ; Linse, Thomas ; Hantschke, Peter ; Kästner, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21934119883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>Ductile fracture</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><toplevel>online_resources</toplevel><creatorcontrib>Seiler, Martha</creatorcontrib><creatorcontrib>Linse, Thomas</creatorcontrib><creatorcontrib>Hantschke, Peter</creatorcontrib><creatorcontrib>Kästner, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seiler, Martha</au><au>Linse, Thomas</au><au>Hantschke, Peter</au><au>Kästner, Markus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An efficient phase-field model for fatigue fracture in ductile materials</atitle><jtitle>arXiv.org</jtitle><date>2019-10-23</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Fatigue fracture in ductile materials, e. g. metals, is caused by cyclic plasticity. Especially regarding the high numbers of load cycles, plastic material models resolving the full loading path are computationally very demanding. Herein, a model with particularly small computational effort is presented. It provides a macroscopic, phenomenological description of fatigue fracture by combining the phase-field method for brittle fracture with a classic durability concept. A local lifetime variable is obtained, which degrades the fracture resistance progressively. By deriving the stress-strain path from cyclic material characteristics, only one increment per load cycle is needed at maximum. The model allows to describe fatigue crack initiation, propagation and residual fracture and can reproduce Paris behaviour.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2193411988
source Free E- Journals
subjects Crack initiation
Crack propagation
Cyclic loads
Ductile fracture
Fatigue failure
Fracture mechanics
Fracture toughness
title An efficient phase-field model for fatigue fracture in ductile materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20efficient%20phase-field%20model%20for%20fatigue%20fracture%20in%20ductile%20materials&rft.jtitle=arXiv.org&rft.au=Seiler,%20Martha&rft.date=2019-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2193411988%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193411988&rft_id=info:pmid/&rfr_iscdi=true