Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts

As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2019-04, Vol.22 (4), p.487-498
Hauptverfasser: Rosemeier, M., Antoniou, A., Chen, X., Lahuerta, F., Berring, P., Branner, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 4
container_start_page 487
container_title Wind energy (Chichester, England)
container_volume 22
creator Rosemeier, M.
Antoniou, A.
Chen, X.
Lahuerta, F.
Berring, P.
Branner, K.
description As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.
doi_str_mv 10.1002/we.2301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193310839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193310839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhQdRsFbxFQIuXMjU3GR-3ZVSf6Cgi4oLFyHJ3JQp06QmMwzd-Q6-oU_i1Lp1dQ-c7557OVF0CXQClLLbHieMUziKRkDLMoaCJce_Oo0TliSn0VkIa0qBAhSj6H3pZd3UdkWwWiEJndJus3UWbUtaDO3eMc6TvrYVaTuvaotENbLC8P359SJ9S6Z3ZDbsSF8HZ4kzRDurcduG8-jEyCbgxd8cR6_38-XsMV48PzzNpotYc8YglqxMARWVJofUcMhBV5lRhcI0qyTDXGM6mEpnrDI0R605yCxhqFOeKZXxcXR1yN1699ENT4u167wdTgoGJedAC14O1PWB0t6F4NGIra830u8EULFvTvQo9s0N5M2B7OsGd_9h4m3-S_8ABSdwGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193310839</pqid></control><display><type>article</type><title>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rosemeier, M. ; Antoniou, A. ; Chen, X. ; Lahuerta, F. ; Berring, P. ; Branner, K.</creator><creatorcontrib>Rosemeier, M. ; Antoniou, A. ; Chen, X. ; Lahuerta, F. ; Berring, P. ; Branner, K.</creatorcontrib><description>As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2301</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>blade design ; Boundary conditions ; certification ; composite structure ; Energy consumption ; Finite element method ; full‐scale blade testing ; International standards ; Mathematical models ; model verification ; Shear strain ; structural testing ; Test procedures ; Trailing edges ; Turbine blades ; Turbines ; Wind power ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2019-04, Vol.22 (4), p.487-498</ispartof><rights>2019 The Authors Wind Energy Published by John Wiley &amp; Sons Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</citedby><cites>FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</cites><orcidid>0000-0001-6726-4068 ; 0000-0002-9853-0581 ; 0000-0001-9825-0232 ; 0000-0002-9601-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2301$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2301$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Rosemeier, M.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Lahuerta, F.</creatorcontrib><creatorcontrib>Berring, P.</creatorcontrib><creatorcontrib>Branner, K.</creatorcontrib><title>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</title><title>Wind energy (Chichester, England)</title><description>As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.</description><subject>blade design</subject><subject>Boundary conditions</subject><subject>certification</subject><subject>composite structure</subject><subject>Energy consumption</subject><subject>Finite element method</subject><subject>full‐scale blade testing</subject><subject>International standards</subject><subject>Mathematical models</subject><subject>model verification</subject><subject>Shear strain</subject><subject>structural testing</subject><subject>Test procedures</subject><subject>Trailing edges</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kM1KAzEUhQdRsFbxFQIuXMjU3GR-3ZVSf6Cgi4oLFyHJ3JQp06QmMwzd-Q6-oU_i1Lp1dQ-c7557OVF0CXQClLLbHieMUziKRkDLMoaCJce_Oo0TliSn0VkIa0qBAhSj6H3pZd3UdkWwWiEJndJus3UWbUtaDO3eMc6TvrYVaTuvaotENbLC8P359SJ9S6Z3ZDbsSF8HZ4kzRDurcduG8-jEyCbgxd8cR6_38-XsMV48PzzNpotYc8YglqxMARWVJofUcMhBV5lRhcI0qyTDXGM6mEpnrDI0R605yCxhqFOeKZXxcXR1yN1699ENT4u167wdTgoGJedAC14O1PWB0t6F4NGIra830u8EULFvTvQo9s0N5M2B7OsGd_9h4m3-S_8ABSdwGA</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Rosemeier, M.</creator><creator>Antoniou, A.</creator><creator>Chen, X.</creator><creator>Lahuerta, F.</creator><creator>Berring, P.</creator><creator>Branner, K.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6726-4068</orcidid><orcidid>https://orcid.org/0000-0002-9853-0581</orcidid><orcidid>https://orcid.org/0000-0001-9825-0232</orcidid><orcidid>https://orcid.org/0000-0002-9601-6343</orcidid></search><sort><creationdate>201904</creationdate><title>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</title><author>Rosemeier, M. ; Antoniou, A. ; Chen, X. ; Lahuerta, F. ; Berring, P. ; Branner, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>blade design</topic><topic>Boundary conditions</topic><topic>certification</topic><topic>composite structure</topic><topic>Energy consumption</topic><topic>Finite element method</topic><topic>full‐scale blade testing</topic><topic>International standards</topic><topic>Mathematical models</topic><topic>model verification</topic><topic>Shear strain</topic><topic>structural testing</topic><topic>Test procedures</topic><topic>Trailing edges</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosemeier, M.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Lahuerta, F.</creatorcontrib><creatorcontrib>Berring, P.</creatorcontrib><creatorcontrib>Branner, K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosemeier, M.</au><au>Antoniou, A.</au><au>Chen, X.</au><au>Lahuerta, F.</au><au>Berring, P.</au><au>Branner, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2019-04</date><risdate>2019</risdate><volume>22</volume><issue>4</issue><spage>487</spage><epage>498</epage><pages>487-498</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2301</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6726-4068</orcidid><orcidid>https://orcid.org/0000-0002-9853-0581</orcidid><orcidid>https://orcid.org/0000-0001-9825-0232</orcidid><orcidid>https://orcid.org/0000-0002-9601-6343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2019-04, Vol.22 (4), p.487-498
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_2193310839
source Wiley Online Library Journals Frontfile Complete
subjects blade design
Boundary conditions
certification
composite structure
Energy consumption
Finite element method
full‐scale blade testing
International standards
Mathematical models
model verification
Shear strain
structural testing
Test procedures
Trailing edges
Turbine blades
Turbines
Wind power
Wind turbines
title Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trailing%20edge%20subcomponent%20testing%20for%20wind%20turbine%20blades%E2%80%93Part%20A:%20Comparison%20of%20concepts&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Rosemeier,%20M.&rft.date=2019-04&rft.volume=22&rft.issue=4&rft.spage=487&rft.epage=498&rft.pages=487-498&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2301&rft_dat=%3Cproquest_cross%3E2193310839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193310839&rft_id=info:pmid/&rfr_iscdi=true