Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts
As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcom...
Gespeichert in:
Veröffentlicht in: | Wind energy (Chichester, England) England), 2019-04, Vol.22 (4), p.487-498 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 498 |
---|---|
container_issue | 4 |
container_start_page | 487 |
container_title | Wind energy (Chichester, England) |
container_volume | 22 |
creator | Rosemeier, M. Antoniou, A. Chen, X. Lahuerta, F. Berring, P. Branner, K. |
description | As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response. |
doi_str_mv | 10.1002/we.2301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193310839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193310839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhQdRsFbxFQIuXMjU3GR-3ZVSf6Cgi4oLFyHJ3JQp06QmMwzd-Q6-oU_i1Lp1dQ-c7557OVF0CXQClLLbHieMUziKRkDLMoaCJce_Oo0TliSn0VkIa0qBAhSj6H3pZd3UdkWwWiEJndJus3UWbUtaDO3eMc6TvrYVaTuvaotENbLC8P359SJ9S6Z3ZDbsSF8HZ4kzRDurcduG8-jEyCbgxd8cR6_38-XsMV48PzzNpotYc8YglqxMARWVJofUcMhBV5lRhcI0qyTDXGM6mEpnrDI0R605yCxhqFOeKZXxcXR1yN1699ENT4u167wdTgoGJedAC14O1PWB0t6F4NGIra830u8EULFvTvQo9s0N5M2B7OsGd_9h4m3-S_8ABSdwGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193310839</pqid></control><display><type>article</type><title>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rosemeier, M. ; Antoniou, A. ; Chen, X. ; Lahuerta, F. ; Berring, P. ; Branner, K.</creator><creatorcontrib>Rosemeier, M. ; Antoniou, A. ; Chen, X. ; Lahuerta, F. ; Berring, P. ; Branner, K.</creatorcontrib><description>As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2301</identifier><language>eng</language><publisher>Bognor Regis: John Wiley & Sons, Inc</publisher><subject>blade design ; Boundary conditions ; certification ; composite structure ; Energy consumption ; Finite element method ; full‐scale blade testing ; International standards ; Mathematical models ; model verification ; Shear strain ; structural testing ; Test procedures ; Trailing edges ; Turbine blades ; Turbines ; Wind power ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2019-04, Vol.22 (4), p.487-498</ispartof><rights>2019 The Authors Wind Energy Published by John Wiley & Sons Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</citedby><cites>FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</cites><orcidid>0000-0001-6726-4068 ; 0000-0002-9853-0581 ; 0000-0001-9825-0232 ; 0000-0002-9601-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2301$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2301$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Rosemeier, M.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Lahuerta, F.</creatorcontrib><creatorcontrib>Berring, P.</creatorcontrib><creatorcontrib>Branner, K.</creatorcontrib><title>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</title><title>Wind energy (Chichester, England)</title><description>As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.</description><subject>blade design</subject><subject>Boundary conditions</subject><subject>certification</subject><subject>composite structure</subject><subject>Energy consumption</subject><subject>Finite element method</subject><subject>full‐scale blade testing</subject><subject>International standards</subject><subject>Mathematical models</subject><subject>model verification</subject><subject>Shear strain</subject><subject>structural testing</subject><subject>Test procedures</subject><subject>Trailing edges</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kM1KAzEUhQdRsFbxFQIuXMjU3GR-3ZVSf6Cgi4oLFyHJ3JQp06QmMwzd-Q6-oU_i1Lp1dQ-c7557OVF0CXQClLLbHieMUziKRkDLMoaCJce_Oo0TliSn0VkIa0qBAhSj6H3pZd3UdkWwWiEJndJus3UWbUtaDO3eMc6TvrYVaTuvaotENbLC8P359SJ9S6Z3ZDbsSF8HZ4kzRDurcduG8-jEyCbgxd8cR6_38-XsMV48PzzNpotYc8YglqxMARWVJofUcMhBV5lRhcI0qyTDXGM6mEpnrDI0R605yCxhqFOeKZXxcXR1yN1699ENT4u167wdTgoGJedAC14O1PWB0t6F4NGIra830u8EULFvTvQo9s0N5M2B7OsGd_9h4m3-S_8ABSdwGA</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Rosemeier, M.</creator><creator>Antoniou, A.</creator><creator>Chen, X.</creator><creator>Lahuerta, F.</creator><creator>Berring, P.</creator><creator>Branner, K.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6726-4068</orcidid><orcidid>https://orcid.org/0000-0002-9853-0581</orcidid><orcidid>https://orcid.org/0000-0001-9825-0232</orcidid><orcidid>https://orcid.org/0000-0002-9601-6343</orcidid></search><sort><creationdate>201904</creationdate><title>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</title><author>Rosemeier, M. ; Antoniou, A. ; Chen, X. ; Lahuerta, F. ; Berring, P. ; Branner, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-a2951eb0af715f3171cd6fb8be56da2e7ce50afbc62df07ecc31a642ec536bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>blade design</topic><topic>Boundary conditions</topic><topic>certification</topic><topic>composite structure</topic><topic>Energy consumption</topic><topic>Finite element method</topic><topic>full‐scale blade testing</topic><topic>International standards</topic><topic>Mathematical models</topic><topic>model verification</topic><topic>Shear strain</topic><topic>structural testing</topic><topic>Test procedures</topic><topic>Trailing edges</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosemeier, M.</creatorcontrib><creatorcontrib>Antoniou, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Lahuerta, F.</creatorcontrib><creatorcontrib>Berring, P.</creatorcontrib><creatorcontrib>Branner, K.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosemeier, M.</au><au>Antoniou, A.</au><au>Chen, X.</au><au>Lahuerta, F.</au><au>Berring, P.</au><au>Branner, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2019-04</date><risdate>2019</risdate><volume>22</volume><issue>4</issue><spage>487</spage><epage>498</epage><pages>487-498</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>As a complement to the mandatory structural full‐scale test for wind turbine blades, the method of subcomponent testing has recently been proposed by international standards and guidelines for the experimental investigation of design‐critical full‐scale parts. This work investigated different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a 34‐m blade. Detailed analytical models to design the SCT concepts with regard to the boundary conditions were derived. Finite element analyses of the SCT's linear response were benchmarked against each other and against the full blade model in terms of displacements, rotations, in‐plane strains, and energy consumption. All SCT concepts were in good agreement with the full‐scale test with respect to the longitudinal strain response but showed deviations in the transverse and shear strain, as well as in the rotational and displacement response.</abstract><cop>Bognor Regis</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/we.2301</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6726-4068</orcidid><orcidid>https://orcid.org/0000-0002-9853-0581</orcidid><orcidid>https://orcid.org/0000-0001-9825-0232</orcidid><orcidid>https://orcid.org/0000-0002-9601-6343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-4244 |
ispartof | Wind energy (Chichester, England), 2019-04, Vol.22 (4), p.487-498 |
issn | 1095-4244 1099-1824 |
language | eng |
recordid | cdi_proquest_journals_2193310839 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | blade design Boundary conditions certification composite structure Energy consumption Finite element method full‐scale blade testing International standards Mathematical models model verification Shear strain structural testing Test procedures Trailing edges Turbine blades Turbines Wind power Wind turbines |
title | Trailing edge subcomponent testing for wind turbine blades–Part A: Comparison of concepts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trailing%20edge%20subcomponent%20testing%20for%20wind%20turbine%20blades%E2%80%93Part%20A:%20Comparison%20of%20concepts&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Rosemeier,%20M.&rft.date=2019-04&rft.volume=22&rft.issue=4&rft.spage=487&rft.epage=498&rft.pages=487-498&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2301&rft_dat=%3Cproquest_cross%3E2193310839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193310839&rft_id=info:pmid/&rfr_iscdi=true |