pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging

Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐depend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2019-03, Vol.20 (6), p.798-802
Hauptverfasser: Hundshammer, Christian, Grashei, Martin, Greiner, Alexandra, Glaser, Steffen J., Schilling, Franz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 6
container_start_page 798
container_title Chemphyschem
container_volume 20
creator Hundshammer, Christian
Grashei, Martin
Greiner, Alexandra
Glaser, Steffen J.
Schilling, Franz
description Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state. Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.
doi_str_mv 10.1002/cphc.201801098
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2193297336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193297336</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1158-3692a83e2c9ffbb77bfd1f3cbc27f0627c70513a16af8935c498a70126f2e59d3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqWwZW2JdcFjJ3G8ROEnlVqBoF1HjmOHVE4cnFYorDgCZ-QkJGrV1cy8efNG-hC6BnILhNA71X6oW0ogJkBEfIImEDAx41EAp4c-oCw8RxddtyGExITDBPk2xQ-61U2hG6WxM3gF2DiPgSV_P78LmWtrdYHfa2ktXjqr1c7qDieurl1je7zuhu14kPat9q2z0lffg7SUZaO3lcJvunONHMPntSyrprxEZ0baTl8d6hStnx5XSTpbvDzPk_vFrAQI4xmLBJUx01QJY_Kc89wUYJjKFeWGRJQrTkJgEiJpYsFCFYhYcgI0MlSHomBTdLPPbb373Olum23czjfDy4yCYFRwxqLBJfaur8rqPmt9VUvfZ0CyEWo2Qs2OULPkNU2OE_sHoJ1uEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193297336</pqid></control><display><type>article</type><title>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hundshammer, Christian ; Grashei, Martin ; Greiner, Alexandra ; Glaser, Steffen J. ; Schilling, Franz</creator><creatorcontrib>Hundshammer, Christian ; Grashei, Martin ; Greiner, Alexandra ; Glaser, Steffen J. ; Schilling, Franz</creatorcontrib><description>Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state. Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201801098</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alanine ; Carbon 13 ; Carboxylic acids ; Chemical reactions ; Dependence ; Hydrogen bonding ; Hydronium ions ; hyperpolarization ; Magnetic resonance imaging ; NMR ; Nuclear magnetic resonance ; Nuclear reactions ; Organic chemistry ; pH dependence ; Relaxation time</subject><ispartof>Chemphyschem, 2019-03, Vol.20 (6), p.798-802</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5239-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201801098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201801098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Hundshammer, Christian</creatorcontrib><creatorcontrib>Grashei, Martin</creatorcontrib><creatorcontrib>Greiner, Alexandra</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><creatorcontrib>Schilling, Franz</creatorcontrib><title>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</title><title>Chemphyschem</title><description>Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state. Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.</description><subject>Alanine</subject><subject>Carbon 13</subject><subject>Carboxylic acids</subject><subject>Chemical reactions</subject><subject>Dependence</subject><subject>Hydrogen bonding</subject><subject>Hydronium ions</subject><subject>hyperpolarization</subject><subject>Magnetic resonance imaging</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactions</subject><subject>Organic chemistry</subject><subject>pH dependence</subject><subject>Relaxation time</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqWwZW2JdcFjJ3G8ROEnlVqBoF1HjmOHVE4cnFYorDgCZ-QkJGrV1cy8efNG-hC6BnILhNA71X6oW0ogJkBEfIImEDAx41EAp4c-oCw8RxddtyGExITDBPk2xQ-61U2hG6WxM3gF2DiPgSV_P78LmWtrdYHfa2ktXjqr1c7qDieurl1je7zuhu14kPat9q2z0lffg7SUZaO3lcJvunONHMPntSyrprxEZ0baTl8d6hStnx5XSTpbvDzPk_vFrAQI4xmLBJUx01QJY_Kc89wUYJjKFeWGRJQrTkJgEiJpYsFCFYhYcgI0MlSHomBTdLPPbb373Olum23czjfDy4yCYFRwxqLBJfaur8rqPmt9VUvfZ0CyEWo2Qs2OULPkNU2OE_sHoJ1uEg</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Hundshammer, Christian</creator><creator>Grashei, Martin</creator><creator>Greiner, Alexandra</creator><creator>Glaser, Steffen J.</creator><creator>Schilling, Franz</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-5239-4628</orcidid></search><sort><creationdate>20190318</creationdate><title>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</title><author>Hundshammer, Christian ; Grashei, Martin ; Greiner, Alexandra ; Glaser, Steffen J. ; Schilling, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1158-3692a83e2c9ffbb77bfd1f3cbc27f0627c70513a16af8935c498a70126f2e59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alanine</topic><topic>Carbon 13</topic><topic>Carboxylic acids</topic><topic>Chemical reactions</topic><topic>Dependence</topic><topic>Hydrogen bonding</topic><topic>Hydronium ions</topic><topic>hyperpolarization</topic><topic>Magnetic resonance imaging</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactions</topic><topic>Organic chemistry</topic><topic>pH dependence</topic><topic>Relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hundshammer, Christian</creatorcontrib><creatorcontrib>Grashei, Martin</creatorcontrib><creatorcontrib>Greiner, Alexandra</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><creatorcontrib>Schilling, Franz</creatorcontrib><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hundshammer, Christian</au><au>Grashei, Martin</au><au>Greiner, Alexandra</au><au>Glaser, Steffen J.</au><au>Schilling, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</atitle><jtitle>Chemphyschem</jtitle><date>2019-03-18</date><risdate>2019</risdate><volume>20</volume><issue>6</issue><spage>798</spage><epage>802</epage><pages>798-802</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state. Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.201801098</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5239-4628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2019-03, Vol.20 (6), p.798-802
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_journals_2193297336
source Wiley Online Library Journals Frontfile Complete
subjects Alanine
Carbon 13
Carboxylic acids
Chemical reactions
Dependence
Hydrogen bonding
Hydronium ions
hyperpolarization
Magnetic resonance imaging
NMR
Nuclear magnetic resonance
Nuclear reactions
Organic chemistry
pH dependence
Relaxation time
title pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%20Dependence%20of%20T1%20for%2013C%E2%80%90Labelled%20Small%20Molecules%20Commonly%20Used%20for%20Hyperpolarized%20Magnetic%20Resonance%20Imaging&rft.jtitle=Chemphyschem&rft.au=Hundshammer,%20Christian&rft.date=2019-03-18&rft.volume=20&rft.issue=6&rft.spage=798&rft.epage=802&rft.pages=798-802&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201801098&rft_dat=%3Cproquest_wiley%3E2193297336%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193297336&rft_id=info:pmid/&rfr_iscdi=true