pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging
Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐depend...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2019-03, Vol.20 (6), p.798-802 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 6 |
container_start_page | 798 |
container_title | Chemphyschem |
container_volume | 20 |
creator | Hundshammer, Christian Grashei, Martin Greiner, Alexandra Glaser, Steffen J. Schilling, Franz |
description | Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state.
Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging. |
doi_str_mv | 10.1002/cphc.201801098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2193297336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193297336</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1158-3692a83e2c9ffbb77bfd1f3cbc27f0627c70513a16af8935c498a70126f2e59d3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqWwZW2JdcFjJ3G8ROEnlVqBoF1HjmOHVE4cnFYorDgCZ-QkJGrV1cy8efNG-hC6BnILhNA71X6oW0ogJkBEfIImEDAx41EAp4c-oCw8RxddtyGExITDBPk2xQ-61U2hG6WxM3gF2DiPgSV_P78LmWtrdYHfa2ktXjqr1c7qDieurl1je7zuhu14kPat9q2z0lffg7SUZaO3lcJvunONHMPntSyrprxEZ0baTl8d6hStnx5XSTpbvDzPk_vFrAQI4xmLBJUx01QJY_Kc89wUYJjKFeWGRJQrTkJgEiJpYsFCFYhYcgI0MlSHomBTdLPPbb373Olum23czjfDy4yCYFRwxqLBJfaur8rqPmt9VUvfZ0CyEWo2Qs2OULPkNU2OE_sHoJ1uEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193297336</pqid></control><display><type>article</type><title>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hundshammer, Christian ; Grashei, Martin ; Greiner, Alexandra ; Glaser, Steffen J. ; Schilling, Franz</creator><creatorcontrib>Hundshammer, Christian ; Grashei, Martin ; Greiner, Alexandra ; Glaser, Steffen J. ; Schilling, Franz</creatorcontrib><description>Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state.
Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201801098</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alanine ; Carbon 13 ; Carboxylic acids ; Chemical reactions ; Dependence ; Hydrogen bonding ; Hydronium ions ; hyperpolarization ; Magnetic resonance imaging ; NMR ; Nuclear magnetic resonance ; Nuclear reactions ; Organic chemistry ; pH dependence ; Relaxation time</subject><ispartof>Chemphyschem, 2019-03, Vol.20 (6), p.798-802</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5239-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201801098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201801098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Hundshammer, Christian</creatorcontrib><creatorcontrib>Grashei, Martin</creatorcontrib><creatorcontrib>Greiner, Alexandra</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><creatorcontrib>Schilling, Franz</creatorcontrib><title>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</title><title>Chemphyschem</title><description>Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state.
Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.</description><subject>Alanine</subject><subject>Carbon 13</subject><subject>Carboxylic acids</subject><subject>Chemical reactions</subject><subject>Dependence</subject><subject>Hydrogen bonding</subject><subject>Hydronium ions</subject><subject>hyperpolarization</subject><subject>Magnetic resonance imaging</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactions</subject><subject>Organic chemistry</subject><subject>pH dependence</subject><subject>Relaxation time</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqWwZW2JdcFjJ3G8ROEnlVqBoF1HjmOHVE4cnFYorDgCZ-QkJGrV1cy8efNG-hC6BnILhNA71X6oW0ogJkBEfIImEDAx41EAp4c-oCw8RxddtyGExITDBPk2xQ-61U2hG6WxM3gF2DiPgSV_P78LmWtrdYHfa2ktXjqr1c7qDieurl1je7zuhu14kPat9q2z0lffg7SUZaO3lcJvunONHMPntSyrprxEZ0baTl8d6hStnx5XSTpbvDzPk_vFrAQI4xmLBJUx01QJY_Kc89wUYJjKFeWGRJQrTkJgEiJpYsFCFYhYcgI0MlSHomBTdLPPbb373Olum23czjfDy4yCYFRwxqLBJfaur8rqPmt9VUvfZ0CyEWo2Qs2OULPkNU2OE_sHoJ1uEg</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>Hundshammer, Christian</creator><creator>Grashei, Martin</creator><creator>Greiner, Alexandra</creator><creator>Glaser, Steffen J.</creator><creator>Schilling, Franz</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-5239-4628</orcidid></search><sort><creationdate>20190318</creationdate><title>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</title><author>Hundshammer, Christian ; Grashei, Martin ; Greiner, Alexandra ; Glaser, Steffen J. ; Schilling, Franz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1158-3692a83e2c9ffbb77bfd1f3cbc27f0627c70513a16af8935c498a70126f2e59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alanine</topic><topic>Carbon 13</topic><topic>Carboxylic acids</topic><topic>Chemical reactions</topic><topic>Dependence</topic><topic>Hydrogen bonding</topic><topic>Hydronium ions</topic><topic>hyperpolarization</topic><topic>Magnetic resonance imaging</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactions</topic><topic>Organic chemistry</topic><topic>pH dependence</topic><topic>Relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hundshammer, Christian</creatorcontrib><creatorcontrib>Grashei, Martin</creatorcontrib><creatorcontrib>Greiner, Alexandra</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><creatorcontrib>Schilling, Franz</creatorcontrib><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hundshammer, Christian</au><au>Grashei, Martin</au><au>Greiner, Alexandra</au><au>Glaser, Steffen J.</au><au>Schilling, Franz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging</atitle><jtitle>Chemphyschem</jtitle><date>2019-03-18</date><risdate>2019</risdate><volume>20</volume><issue>6</issue><spage>798</spage><epage>802</epage><pages>798-802</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Hyperpolarization is a method to enhance the nuclear magnetic resonance signal by up to five orders of magnitude. However, the hyperpolarized (HP) state is transient and decays with the spin‐lattice relaxation time (T1), which is on the order of a few tens of seconds. Here, we analyzed the pH‐dependence of T1 for commonly used HP 13C‐labelled small molecules such as acetate, alanine, fumarate, lactate, pyruvate, urea and zymonic acid. For instance, the T1 of HP pyruvate is about 2.5 fold smaller at acidic pH (25 s, pH 1.7, B0=1 T) compared to pH close to physiological conditions (66 s, pH 7.3, B0=1 T). Our data shows that increasing hydronium ion concentrations shorten the T1 of protonated carboxylic acids of most of the analyzed molecules except lactate. Furthermore it suggests that intermolecular hydrogen bonding at low pH can contribute to this T1 shortening. In addition, enhanced proton exchange and chemical reactions at the pKa appear to be detrimental for the HP‐state.
Hyperpolarization enhances the nuclear magnetic resonance signal artificially by up to five orders of magnitude. However, the hyperpolarized state decays quickly with the longitudinal relaxation time T1. The authors analyze the pH dependence of T1 for several 13C‐labelled small molecules commonly used for hyperpolarized magnetic resonance imaging.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.201801098</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5239-4628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2019-03, Vol.20 (6), p.798-802 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_journals_2193297336 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alanine Carbon 13 Carboxylic acids Chemical reactions Dependence Hydrogen bonding Hydronium ions hyperpolarization Magnetic resonance imaging NMR Nuclear magnetic resonance Nuclear reactions Organic chemistry pH dependence Relaxation time |
title | pH Dependence of T1 for 13C‐Labelled Small Molecules Commonly Used for Hyperpolarized Magnetic Resonance Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%20Dependence%20of%20T1%20for%2013C%E2%80%90Labelled%20Small%20Molecules%20Commonly%20Used%20for%20Hyperpolarized%20Magnetic%20Resonance%20Imaging&rft.jtitle=Chemphyschem&rft.au=Hundshammer,%20Christian&rft.date=2019-03-18&rft.volume=20&rft.issue=6&rft.spage=798&rft.epage=802&rft.pages=798-802&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201801098&rft_dat=%3Cproquest_wiley%3E2193297336%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193297336&rft_id=info:pmid/&rfr_iscdi=true |