Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid

In this study, a numerical investigation of the solar parabolic trough collector with an area of 0.856 m2 by combination of Monte Carlo Ray‐Trace (MCRT) and finite volume method (FVM) has been carried out using the FLUENT software. The purpose of this study is to investigate the effect of metal foam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2019-03, Vol.38 (2), p.727-740
Hauptverfasser: Tayebi, Rashid, Akbarzadeh, Sanaz, Valipour, Mohammad Sadegh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 2
container_start_page 727
container_title Environmental progress
container_volume 38
creator Tayebi, Rashid
Akbarzadeh, Sanaz
Valipour, Mohammad Sadegh
description In this study, a numerical investigation of the solar parabolic trough collector with an area of 0.856 m2 by combination of Monte Carlo Ray‐Trace (MCRT) and finite volume method (FVM) has been carried out using the FLUENT software. The purpose of this study is to investigate the effect of metal foams and nanofluids on the thermal performance of a direct absorption parabolic trough collector (DAPTC). For this purpose, three‐dimensional fully developed laminar convection heat transfer of Al2O3 and TiO2/water nanofluids is examined by 0.1, 0.2, and 0.3 vol %. Furthermore, 64 cm copper‐filled porous media in a volumetric absorbent tube are applied. The obtained results of numerical simulations are compared with the experimental data. The results demonstrate a good agreement between the numerical simulations and experimental data. The results indicate that the maximum efficiency was 34.51% for TiO2/water at 0.3 vol %. Furthermore, using porous media with high absorption coefficient and scattering coefficient that could absorb more incoming radiation and transfer to heat transfer fluid can result in increasing the efficiency of the collector. © 2018 American Institute of Chemical Engineers Environ Prog, 38: 727–740, 2019
doi_str_mv 10.1002/ep.13010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193294399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193294399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-f9fa3061a186729b2be885f0032b1fb9d6caffeb36ff5e94e1fd80839d2844783</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AiCq6r4CMEvHjpmjTZbnOUxS9Y1IOeQ5JOdrO0SU0ape_iw1p31ZunGZjfzMA_y84JnhGMiyvoZoRigg-yCeGM5Qs2x4d_PSuOs5MYtxiXlHE-yT4fUwvBatkg694h9nYte-sd8gaBMVZbcHpA4DbSaWjB9aNDEtU2gO6RVNGHbrfQySCVb6xGffBpvUHaN81ofEBe69RZqJEaxtXOj_OIWqhtapF0NYqyT0H2v8BJ502TbH2aHRnZRDj7qdPs9fbmZXmfr57uHpbXq1xTinFuuJEUl0SSqlwUXBUKqmpuMKaFIkbxutTSGFC0NGYOnAExdYUryuuiYmxR0Wl2sb_bBf-WxhDE1qfgxpeiIJwWnFHOR3W5Vzr4GAMY0QXbyjAIgsV39gI6sct-pPmeftgGhn-duHne-y_TzYgW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193294399</pqid></control><display><type>article</type><title>Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tayebi, Rashid ; Akbarzadeh, Sanaz ; Valipour, Mohammad Sadegh</creator><creatorcontrib>Tayebi, Rashid ; Akbarzadeh, Sanaz ; Valipour, Mohammad Sadegh</creatorcontrib><description>In this study, a numerical investigation of the solar parabolic trough collector with an area of 0.856 m2 by combination of Monte Carlo Ray‐Trace (MCRT) and finite volume method (FVM) has been carried out using the FLUENT software. The purpose of this study is to investigate the effect of metal foams and nanofluids on the thermal performance of a direct absorption parabolic trough collector (DAPTC). For this purpose, three‐dimensional fully developed laminar convection heat transfer of Al2O3 and TiO2/water nanofluids is examined by 0.1, 0.2, and 0.3 vol %. Furthermore, 64 cm copper‐filled porous media in a volumetric absorbent tube are applied. The obtained results of numerical simulations are compared with the experimental data. The results demonstrate a good agreement between the numerical simulations and experimental data. The results indicate that the maximum efficiency was 34.51% for TiO2/water at 0.3 vol %. Furthermore, using porous media with high absorption coefficient and scattering coefficient that could absorb more incoming radiation and transfer to heat transfer fluid can result in increasing the efficiency of the collector. © 2018 American Institute of Chemical Engineers Environ Prog, 38: 727–740, 2019</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.13010</identifier><language>eng</language><publisher>Hoboken: John Wiley and Sons, Limited</publisher><subject>Absorption ; Absorptivity ; Aluminum oxide ; Computer simulation ; Convection ; direct absorption parabolic trough collector ; Efficiency ; Experimental data ; Finite volume method ; Foamed metals ; Foams ; Heat transfer ; Laminar heat transfer ; Metal foams ; Nanofluids ; Numerical analysis ; Organic chemistry ; Porous media ; porous medium ; Radiation ; Scattering coefficient ; Scattering coefficients ; Simulation ; Titanium dioxide ; volume absorption</subject><ispartof>Environmental progress, 2019-03, Vol.38 (2), p.727-740</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-f9fa3061a186729b2be885f0032b1fb9d6caffeb36ff5e94e1fd80839d2844783</citedby><cites>FETCH-LOGICAL-c3300-f9fa3061a186729b2be885f0032b1fb9d6caffeb36ff5e94e1fd80839d2844783</cites><orcidid>0000-0002-3500-4576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.13010$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.13010$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Tayebi, Rashid</creatorcontrib><creatorcontrib>Akbarzadeh, Sanaz</creatorcontrib><creatorcontrib>Valipour, Mohammad Sadegh</creatorcontrib><title>Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid</title><title>Environmental progress</title><description>In this study, a numerical investigation of the solar parabolic trough collector with an area of 0.856 m2 by combination of Monte Carlo Ray‐Trace (MCRT) and finite volume method (FVM) has been carried out using the FLUENT software. The purpose of this study is to investigate the effect of metal foams and nanofluids on the thermal performance of a direct absorption parabolic trough collector (DAPTC). For this purpose, three‐dimensional fully developed laminar convection heat transfer of Al2O3 and TiO2/water nanofluids is examined by 0.1, 0.2, and 0.3 vol %. Furthermore, 64 cm copper‐filled porous media in a volumetric absorbent tube are applied. The obtained results of numerical simulations are compared with the experimental data. The results demonstrate a good agreement between the numerical simulations and experimental data. The results indicate that the maximum efficiency was 34.51% for TiO2/water at 0.3 vol %. Furthermore, using porous media with high absorption coefficient and scattering coefficient that could absorb more incoming radiation and transfer to heat transfer fluid can result in increasing the efficiency of the collector. © 2018 American Institute of Chemical Engineers Environ Prog, 38: 727–740, 2019</description><subject>Absorption</subject><subject>Absorptivity</subject><subject>Aluminum oxide</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>direct absorption parabolic trough collector</subject><subject>Efficiency</subject><subject>Experimental data</subject><subject>Finite volume method</subject><subject>Foamed metals</subject><subject>Foams</subject><subject>Heat transfer</subject><subject>Laminar heat transfer</subject><subject>Metal foams</subject><subject>Nanofluids</subject><subject>Numerical analysis</subject><subject>Organic chemistry</subject><subject>Porous media</subject><subject>porous medium</subject><subject>Radiation</subject><subject>Scattering coefficient</subject><subject>Scattering coefficients</subject><subject>Simulation</subject><subject>Titanium dioxide</subject><subject>volume absorption</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AiCq6r4CMEvHjpmjTZbnOUxS9Y1IOeQ5JOdrO0SU0ape_iw1p31ZunGZjfzMA_y84JnhGMiyvoZoRigg-yCeGM5Qs2x4d_PSuOs5MYtxiXlHE-yT4fUwvBatkg694h9nYte-sd8gaBMVZbcHpA4DbSaWjB9aNDEtU2gO6RVNGHbrfQySCVb6xGffBpvUHaN81ofEBe69RZqJEaxtXOj_OIWqhtapF0NYqyT0H2v8BJ502TbH2aHRnZRDj7qdPs9fbmZXmfr57uHpbXq1xTinFuuJEUl0SSqlwUXBUKqmpuMKaFIkbxutTSGFC0NGYOnAExdYUryuuiYmxR0Wl2sb_bBf-WxhDE1qfgxpeiIJwWnFHOR3W5Vzr4GAMY0QXbyjAIgsV39gI6sct-pPmeftgGhn-duHne-y_TzYgW</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Tayebi, Rashid</creator><creator>Akbarzadeh, Sanaz</creator><creator>Valipour, Mohammad Sadegh</creator><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3500-4576</orcidid></search><sort><creationdate>201903</creationdate><title>Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid</title><author>Tayebi, Rashid ; Akbarzadeh, Sanaz ; Valipour, Mohammad Sadegh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-f9fa3061a186729b2be885f0032b1fb9d6caffeb36ff5e94e1fd80839d2844783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Absorptivity</topic><topic>Aluminum oxide</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>direct absorption parabolic trough collector</topic><topic>Efficiency</topic><topic>Experimental data</topic><topic>Finite volume method</topic><topic>Foamed metals</topic><topic>Foams</topic><topic>Heat transfer</topic><topic>Laminar heat transfer</topic><topic>Metal foams</topic><topic>Nanofluids</topic><topic>Numerical analysis</topic><topic>Organic chemistry</topic><topic>Porous media</topic><topic>porous medium</topic><topic>Radiation</topic><topic>Scattering coefficient</topic><topic>Scattering coefficients</topic><topic>Simulation</topic><topic>Titanium dioxide</topic><topic>volume absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayebi, Rashid</creatorcontrib><creatorcontrib>Akbarzadeh, Sanaz</creatorcontrib><creatorcontrib>Valipour, Mohammad Sadegh</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayebi, Rashid</au><au>Akbarzadeh, Sanaz</au><au>Valipour, Mohammad Sadegh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid</atitle><jtitle>Environmental progress</jtitle><date>2019-03</date><risdate>2019</risdate><volume>38</volume><issue>2</issue><spage>727</spage><epage>740</epage><pages>727-740</pages><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>In this study, a numerical investigation of the solar parabolic trough collector with an area of 0.856 m2 by combination of Monte Carlo Ray‐Trace (MCRT) and finite volume method (FVM) has been carried out using the FLUENT software. The purpose of this study is to investigate the effect of metal foams and nanofluids on the thermal performance of a direct absorption parabolic trough collector (DAPTC). For this purpose, three‐dimensional fully developed laminar convection heat transfer of Al2O3 and TiO2/water nanofluids is examined by 0.1, 0.2, and 0.3 vol %. Furthermore, 64 cm copper‐filled porous media in a volumetric absorbent tube are applied. The obtained results of numerical simulations are compared with the experimental data. The results demonstrate a good agreement between the numerical simulations and experimental data. The results indicate that the maximum efficiency was 34.51% for TiO2/water at 0.3 vol %. Furthermore, using porous media with high absorption coefficient and scattering coefficient that could absorb more incoming radiation and transfer to heat transfer fluid can result in increasing the efficiency of the collector. © 2018 American Institute of Chemical Engineers Environ Prog, 38: 727–740, 2019</abstract><cop>Hoboken</cop><pub>John Wiley and Sons, Limited</pub><doi>10.1002/ep.13010</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3500-4576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2019-03, Vol.38 (2), p.727-740
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_journals_2193294399
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Absorptivity
Aluminum oxide
Computer simulation
Convection
direct absorption parabolic trough collector
Efficiency
Experimental data
Finite volume method
Foamed metals
Foams
Heat transfer
Laminar heat transfer
Metal foams
Nanofluids
Numerical analysis
Organic chemistry
Porous media
porous medium
Radiation
Scattering coefficient
Scattering coefficients
Simulation
Titanium dioxide
volume absorption
title Numerical investigation of efficiency enhancement in a direct absorption parabolic trough collector occupied by a porous medium and saturated by a nanofluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20efficiency%20enhancement%20in%20a%20direct%20absorption%20parabolic%20trough%20collector%20occupied%20by%20a%20porous%20medium%20and%20saturated%20by%20a%20nanofluid&rft.jtitle=Environmental%20progress&rft.au=Tayebi,%20Rashid&rft.date=2019-03&rft.volume=38&rft.issue=2&rft.spage=727&rft.epage=740&rft.pages=727-740&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.13010&rft_dat=%3Cproquest_cross%3E2193294399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193294399&rft_id=info:pmid/&rfr_iscdi=true