On the brachistochrone of a fluid-filled cylinder
We discuss a fluid dynamic variant of the classical Bernoulli’s brachistochrone problem. The classical brachistochrone for a non-dissipative particle is governed by maximization of the particle’s kinetic energy, resulting in a cycloid. We consider a variant where the particle is replaced by a cylind...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-04, Vol.865, p.775-789 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | |
container_start_page | 775 |
container_title | Journal of fluid mechanics |
container_volume | 865 |
creator | Gurram, Srikanth Sarma Raja, Sharan Mahapatra, Pallab Sinha Panchagnula, Mahesh V. |
description | We discuss a fluid dynamic variant of the classical Bernoulli’s brachistochrone problem. The classical brachistochrone for a non-dissipative particle is governed by maximization of the particle’s kinetic energy, resulting in a cycloid. We consider a variant where the particle is replaced by a cylinder (bottle) filled with a viscous fluid and attempt to identify the shape of the curve connecting two points along which the bottle would move in the shortest time. We derive the system of integro-differential equations governing system dynamics for a given shape of the curve. Using these equations, we pose the brachistochrone problem by invoking an optimal control formalism and show that (in general) the curve deviates from a cycloid. This is due to the fact that increasing the rate of change of the bottle’s kinetic energy is accompanied by increased viscous dissipation. We show that the bottle motion is governed by a balance between the desire to minimize travel time and the need to reach the end point in the face of increased dissipation. The trade-off between these two physical forces plays a vital role in determining the brachistochrone of a fluid-filled cylinder. We show that in the two limits of either vanishing or high viscosity, the brachistochrone for this problem reduces to a cycloid. An intermediate viscosity range is identified where the fluid brachistochrone is non-cycloidal. Finally, we show the relevance of these results to the dynamics of a rolling liquid marble. |
doi_str_mv | 10.1017/jfm.2019.70 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193232199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_70</cupid><sourcerecordid>2193232199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-57401f60d327dd26fc04f99285f3fc0edfa4ce086986231343495f2845801c703</originalsourceid><addsrcrecordid>eNptkD1PwzAQQC0EEqEw8QciMSKXO9uJ4xFVUJAqdYHZSv1BEuWj2MnQf09KK7Gw3N3w9E56hNwjLBFQPjW-WzJAtZRwQRIUuaIyF9klSQAYo4gMrslNjA0AclAyIbjt07Fy6S6UpqrjOJgqDL1LB5-WqW-n2lJft62zqTm0dW9duCVXvmyjuzvvBfl8fflYvdHNdv2-et5Qw5QaaSYFoM_BciatZbk3ILxSrMg8n29nfSmMgyJXRc44csGFyjwrRFYAGgl8QR5O3n0YvicXR90MU-jnl5qh4ozPU83U44kyYYgxOK_3oe7KcNAI-thEz030sYn-ddIzXXa7UNsv9yf9j_8BFShgvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193232199</pqid></control><display><type>article</type><title>On the brachistochrone of a fluid-filled cylinder</title><source>Cambridge University Press Journals Complete</source><creator>Gurram, Srikanth Sarma ; Raja, Sharan ; Mahapatra, Pallab Sinha ; Panchagnula, Mahesh V.</creator><creatorcontrib>Gurram, Srikanth Sarma ; Raja, Sharan ; Mahapatra, Pallab Sinha ; Panchagnula, Mahesh V.</creatorcontrib><description>We discuss a fluid dynamic variant of the classical Bernoulli’s brachistochrone problem. The classical brachistochrone for a non-dissipative particle is governed by maximization of the particle’s kinetic energy, resulting in a cycloid. We consider a variant where the particle is replaced by a cylinder (bottle) filled with a viscous fluid and attempt to identify the shape of the curve connecting two points along which the bottle would move in the shortest time. We derive the system of integro-differential equations governing system dynamics for a given shape of the curve. Using these equations, we pose the brachistochrone problem by invoking an optimal control formalism and show that (in general) the curve deviates from a cycloid. This is due to the fact that increasing the rate of change of the bottle’s kinetic energy is accompanied by increased viscous dissipation. We show that the bottle motion is governed by a balance between the desire to minimize travel time and the need to reach the end point in the face of increased dissipation. The trade-off between these two physical forces plays a vital role in determining the brachistochrone of a fluid-filled cylinder. We show that in the two limits of either vanishing or high viscosity, the brachistochrone for this problem reduces to a cycloid. An intermediate viscosity range is identified where the fluid brachistochrone is non-cycloidal. Finally, we show the relevance of these results to the dynamics of a rolling liquid marble.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.70</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Connecting ; Cycloids ; Cylinders ; Differential equations ; Dynamics ; Fluid dynamics ; JFM Papers ; Kinematics ; Kinetic energy ; Marble ; Mathematical analysis ; Optimal control ; Optimization ; Problems ; Shape ; System dynamics ; Travel time ; Velocity ; Viscosity ; Viscous fluids</subject><ispartof>Journal of fluid mechanics, 2019-04, Vol.865, p.775-789</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-57401f60d327dd26fc04f99285f3fc0edfa4ce086986231343495f2845801c703</citedby><cites>FETCH-LOGICAL-c299t-57401f60d327dd26fc04f99285f3fc0edfa4ce086986231343495f2845801c703</cites><orcidid>0000-0002-1728-2863 ; 0000-0003-2943-6900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112019000703/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Gurram, Srikanth Sarma</creatorcontrib><creatorcontrib>Raja, Sharan</creatorcontrib><creatorcontrib>Mahapatra, Pallab Sinha</creatorcontrib><creatorcontrib>Panchagnula, Mahesh V.</creatorcontrib><title>On the brachistochrone of a fluid-filled cylinder</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We discuss a fluid dynamic variant of the classical Bernoulli’s brachistochrone problem. The classical brachistochrone for a non-dissipative particle is governed by maximization of the particle’s kinetic energy, resulting in a cycloid. We consider a variant where the particle is replaced by a cylinder (bottle) filled with a viscous fluid and attempt to identify the shape of the curve connecting two points along which the bottle would move in the shortest time. We derive the system of integro-differential equations governing system dynamics for a given shape of the curve. Using these equations, we pose the brachistochrone problem by invoking an optimal control formalism and show that (in general) the curve deviates from a cycloid. This is due to the fact that increasing the rate of change of the bottle’s kinetic energy is accompanied by increased viscous dissipation. We show that the bottle motion is governed by a balance between the desire to minimize travel time and the need to reach the end point in the face of increased dissipation. The trade-off between these two physical forces plays a vital role in determining the brachistochrone of a fluid-filled cylinder. We show that in the two limits of either vanishing or high viscosity, the brachistochrone for this problem reduces to a cycloid. An intermediate viscosity range is identified where the fluid brachistochrone is non-cycloidal. Finally, we show the relevance of these results to the dynamics of a rolling liquid marble.</description><subject>Connecting</subject><subject>Cycloids</subject><subject>Cylinders</subject><subject>Differential equations</subject><subject>Dynamics</subject><subject>Fluid dynamics</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Kinetic energy</subject><subject>Marble</subject><subject>Mathematical analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Problems</subject><subject>Shape</subject><subject>System dynamics</subject><subject>Travel time</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Viscous fluids</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQQC0EEqEw8QciMSKXO9uJ4xFVUJAqdYHZSv1BEuWj2MnQf09KK7Gw3N3w9E56hNwjLBFQPjW-WzJAtZRwQRIUuaIyF9klSQAYo4gMrslNjA0AclAyIbjt07Fy6S6UpqrjOJgqDL1LB5-WqW-n2lJft62zqTm0dW9duCVXvmyjuzvvBfl8fflYvdHNdv2-et5Qw5QaaSYFoM_BciatZbk3ILxSrMg8n29nfSmMgyJXRc44csGFyjwrRFYAGgl8QR5O3n0YvicXR90MU-jnl5qh4ozPU83U44kyYYgxOK_3oe7KcNAI-thEz030sYn-ddIzXXa7UNsv9yf9j_8BFShgvg</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Gurram, Srikanth Sarma</creator><creator>Raja, Sharan</creator><creator>Mahapatra, Pallab Sinha</creator><creator>Panchagnula, Mahesh V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1728-2863</orcidid><orcidid>https://orcid.org/0000-0003-2943-6900</orcidid></search><sort><creationdate>20190425</creationdate><title>On the brachistochrone of a fluid-filled cylinder</title><author>Gurram, Srikanth Sarma ; Raja, Sharan ; Mahapatra, Pallab Sinha ; Panchagnula, Mahesh V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-57401f60d327dd26fc04f99285f3fc0edfa4ce086986231343495f2845801c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Connecting</topic><topic>Cycloids</topic><topic>Cylinders</topic><topic>Differential equations</topic><topic>Dynamics</topic><topic>Fluid dynamics</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Kinetic energy</topic><topic>Marble</topic><topic>Mathematical analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Problems</topic><topic>Shape</topic><topic>System dynamics</topic><topic>Travel time</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurram, Srikanth Sarma</creatorcontrib><creatorcontrib>Raja, Sharan</creatorcontrib><creatorcontrib>Mahapatra, Pallab Sinha</creatorcontrib><creatorcontrib>Panchagnula, Mahesh V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurram, Srikanth Sarma</au><au>Raja, Sharan</au><au>Mahapatra, Pallab Sinha</au><au>Panchagnula, Mahesh V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the brachistochrone of a fluid-filled cylinder</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>865</volume><spage>775</spage><epage>789</epage><pages>775-789</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We discuss a fluid dynamic variant of the classical Bernoulli’s brachistochrone problem. The classical brachistochrone for a non-dissipative particle is governed by maximization of the particle’s kinetic energy, resulting in a cycloid. We consider a variant where the particle is replaced by a cylinder (bottle) filled with a viscous fluid and attempt to identify the shape of the curve connecting two points along which the bottle would move in the shortest time. We derive the system of integro-differential equations governing system dynamics for a given shape of the curve. Using these equations, we pose the brachistochrone problem by invoking an optimal control formalism and show that (in general) the curve deviates from a cycloid. This is due to the fact that increasing the rate of change of the bottle’s kinetic energy is accompanied by increased viscous dissipation. We show that the bottle motion is governed by a balance between the desire to minimize travel time and the need to reach the end point in the face of increased dissipation. The trade-off between these two physical forces plays a vital role in determining the brachistochrone of a fluid-filled cylinder. We show that in the two limits of either vanishing or high viscosity, the brachistochrone for this problem reduces to a cycloid. An intermediate viscosity range is identified where the fluid brachistochrone is non-cycloidal. Finally, we show the relevance of these results to the dynamics of a rolling liquid marble.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.70</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1728-2863</orcidid><orcidid>https://orcid.org/0000-0003-2943-6900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-04, Vol.865, p.775-789 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2193232199 |
source | Cambridge University Press Journals Complete |
subjects | Connecting Cycloids Cylinders Differential equations Dynamics Fluid dynamics JFM Papers Kinematics Kinetic energy Marble Mathematical analysis Optimal control Optimization Problems Shape System dynamics Travel time Velocity Viscosity Viscous fluids |
title | On the brachistochrone of a fluid-filled cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20brachistochrone%20of%20a%20fluid-filled%20cylinder&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gurram,%20Srikanth%20Sarma&rft.date=2019-04-25&rft.volume=865&rft.spage=775&rft.epage=789&rft.pages=775-789&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.70&rft_dat=%3Cproquest_cross%3E2193232199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193232199&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_70&rfr_iscdi=true |