Stability of the Prandtl model for katabatic slope flows

We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-04, Vol.865, Article R2
Hauptverfasser: Xiao, Cheng-Nian, Senocak, Inanc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 865
creator Xiao, Cheng-Nian
Senocak, Inanc
description We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of $Ri>0.25$ . At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as $3\times 10^{-3}$ .
doi_str_mv 10.1017/jfm.2019.132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193231256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_132</cupid><sourcerecordid>2193231256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKs7f0DArTO-l3QmM0spfkFBQV2HN5lEp840NUmR_nuntODG1d2cey8cxi4RcgRUN0s35AKwzlGKIzbBWVlnqpwVx2wCIESGKOCUncW4BEAJtZqw6jVR0_Vd2nLvePq0_CXQqk09H3xre-584F80MpQ6w2Pv15a73v_Ec3biqI_24pBT9n5_9zZ_zBbPD0_z20VmJIiUoVGNM2VNZEtqTeGEqiSBsNZVDkslCmMKsnXlZo7ASpSmaprGKDISC4dyyq72u-vgvzc2Jr30m7AaL7XAWgqJoihH6npPmeBjDNbpdegGCluNoHdu9OhG79zo0c2I5wechiZ07Yf9W_238AsJAWZ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193231256</pqid></control><display><type>article</type><title>Stability of the Prandtl model for katabatic slope flows</title><source>Cambridge University Press Journals Complete</source><creator>Xiao, Cheng-Nian ; Senocak, Inanc</creator><creatorcontrib>Xiao, Cheng-Nian ; Senocak, Inanc</creatorcontrib><description>We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of $Ri&gt;0.25$ . At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as $3\times 10^{-3}$ .</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.132</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Base flow ; Buoyancy flux ; Computer simulation ; Density stratification ; Direction ; Flow stability ; Flow structures ; Fluid mechanics ; Heat ; Instability ; JFM Rapids ; Kinematics ; Laminar flow ; Mathematical models ; Modes ; Parameters ; Prandtl number ; Reynolds number ; Slope ; Slope stability ; Stability analysis ; Stability criteria ; Stratification ; Velocity ; Wave propagation</subject><ispartof>Journal of fluid mechanics, 2019-04, Vol.865, Article R2</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</citedby><cites>FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</cites><orcidid>0000-0001-7788-8827 ; 0000-0003-1967-7583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112019001320/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Xiao, Cheng-Nian</creatorcontrib><creatorcontrib>Senocak, Inanc</creatorcontrib><title>Stability of the Prandtl model for katabatic slope flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of $Ri&gt;0.25$ . At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as $3\times 10^{-3}$ .</description><subject>Base flow</subject><subject>Buoyancy flux</subject><subject>Computer simulation</subject><subject>Density stratification</subject><subject>Direction</subject><subject>Flow stability</subject><subject>Flow structures</subject><subject>Fluid mechanics</subject><subject>Heat</subject><subject>Instability</subject><subject>JFM Rapids</subject><subject>Kinematics</subject><subject>Laminar flow</subject><subject>Mathematical models</subject><subject>Modes</subject><subject>Parameters</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Slope</subject><subject>Slope stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Stratification</subject><subject>Velocity</subject><subject>Wave propagation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEURYMoWKs7f0DArTO-l3QmM0spfkFBQV2HN5lEp840NUmR_nuntODG1d2cey8cxi4RcgRUN0s35AKwzlGKIzbBWVlnqpwVx2wCIESGKOCUncW4BEAJtZqw6jVR0_Vd2nLvePq0_CXQqk09H3xre-584F80MpQ6w2Pv15a73v_Ec3biqI_24pBT9n5_9zZ_zBbPD0_z20VmJIiUoVGNM2VNZEtqTeGEqiSBsNZVDkslCmMKsnXlZo7ASpSmaprGKDISC4dyyq72u-vgvzc2Jr30m7AaL7XAWgqJoihH6npPmeBjDNbpdegGCluNoHdu9OhG79zo0c2I5wechiZ07Yf9W_238AsJAWZ3</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Xiao, Cheng-Nian</creator><creator>Senocak, Inanc</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7788-8827</orcidid><orcidid>https://orcid.org/0000-0003-1967-7583</orcidid></search><sort><creationdate>20190425</creationdate><title>Stability of the Prandtl model for katabatic slope flows</title><author>Xiao, Cheng-Nian ; Senocak, Inanc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base flow</topic><topic>Buoyancy flux</topic><topic>Computer simulation</topic><topic>Density stratification</topic><topic>Direction</topic><topic>Flow stability</topic><topic>Flow structures</topic><topic>Fluid mechanics</topic><topic>Heat</topic><topic>Instability</topic><topic>JFM Rapids</topic><topic>Kinematics</topic><topic>Laminar flow</topic><topic>Mathematical models</topic><topic>Modes</topic><topic>Parameters</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Slope</topic><topic>Slope stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Stratification</topic><topic>Velocity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Cheng-Nian</creatorcontrib><creatorcontrib>Senocak, Inanc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Cheng-Nian</au><au>Senocak, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the Prandtl model for katabatic slope flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>865</volume><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of $Ri&gt;0.25$ . At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as $3\times 10^{-3}$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.132</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7788-8827</orcidid><orcidid>https://orcid.org/0000-0003-1967-7583</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-04, Vol.865, Article R2
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2193231256
source Cambridge University Press Journals Complete
subjects Base flow
Buoyancy flux
Computer simulation
Density stratification
Direction
Flow stability
Flow structures
Fluid mechanics
Heat
Instability
JFM Rapids
Kinematics
Laminar flow
Mathematical models
Modes
Parameters
Prandtl number
Reynolds number
Slope
Slope stability
Stability analysis
Stability criteria
Stratification
Velocity
Wave propagation
title Stability of the Prandtl model for katabatic slope flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20Prandtl%20model%20for%20katabatic%20slope%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Xiao,%20Cheng-Nian&rft.date=2019-04-25&rft.volume=865&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.132&rft_dat=%3Cproquest_cross%3E2193231256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193231256&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_132&rfr_iscdi=true