Stability of the Prandtl model for katabatic slope flows
We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability a...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-04, Vol.865, Article R2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 865 |
creator | Xiao, Cheng-Nian Senocak, Inanc |
description | We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of
$Ri>0.25$
. At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as
$3\times 10^{-3}$
. |
doi_str_mv | 10.1017/jfm.2019.132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193231256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_132</cupid><sourcerecordid>2193231256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMoWKs7f0DArTO-l3QmM0spfkFBQV2HN5lEp840NUmR_nuntODG1d2cey8cxi4RcgRUN0s35AKwzlGKIzbBWVlnqpwVx2wCIESGKOCUncW4BEAJtZqw6jVR0_Vd2nLvePq0_CXQqk09H3xre-584F80MpQ6w2Pv15a73v_Ec3biqI_24pBT9n5_9zZ_zBbPD0_z20VmJIiUoVGNM2VNZEtqTeGEqiSBsNZVDkslCmMKsnXlZo7ASpSmaprGKDISC4dyyq72u-vgvzc2Jr30m7AaL7XAWgqJoihH6npPmeBjDNbpdegGCluNoHdu9OhG79zo0c2I5wechiZ07Yf9W_238AsJAWZ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193231256</pqid></control><display><type>article</type><title>Stability of the Prandtl model for katabatic slope flows</title><source>Cambridge University Press Journals Complete</source><creator>Xiao, Cheng-Nian ; Senocak, Inanc</creator><creatorcontrib>Xiao, Cheng-Nian ; Senocak, Inanc</creatorcontrib><description>We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of
$Ri>0.25$
. At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as
$3\times 10^{-3}$
.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.132</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Base flow ; Buoyancy flux ; Computer simulation ; Density stratification ; Direction ; Flow stability ; Flow structures ; Fluid mechanics ; Heat ; Instability ; JFM Rapids ; Kinematics ; Laminar flow ; Mathematical models ; Modes ; Parameters ; Prandtl number ; Reynolds number ; Slope ; Slope stability ; Stability analysis ; Stability criteria ; Stratification ; Velocity ; Wave propagation</subject><ispartof>Journal of fluid mechanics, 2019-04, Vol.865, Article R2</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</citedby><cites>FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</cites><orcidid>0000-0001-7788-8827 ; 0000-0003-1967-7583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112019001320/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Xiao, Cheng-Nian</creatorcontrib><creatorcontrib>Senocak, Inanc</creatorcontrib><title>Stability of the Prandtl model for katabatic slope flows</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of
$Ri>0.25$
. At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as
$3\times 10^{-3}$
.</description><subject>Base flow</subject><subject>Buoyancy flux</subject><subject>Computer simulation</subject><subject>Density stratification</subject><subject>Direction</subject><subject>Flow stability</subject><subject>Flow structures</subject><subject>Fluid mechanics</subject><subject>Heat</subject><subject>Instability</subject><subject>JFM Rapids</subject><subject>Kinematics</subject><subject>Laminar flow</subject><subject>Mathematical models</subject><subject>Modes</subject><subject>Parameters</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Slope</subject><subject>Slope stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Stratification</subject><subject>Velocity</subject><subject>Wave propagation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEURYMoWKs7f0DArTO-l3QmM0spfkFBQV2HN5lEp840NUmR_nuntODG1d2cey8cxi4RcgRUN0s35AKwzlGKIzbBWVlnqpwVx2wCIESGKOCUncW4BEAJtZqw6jVR0_Vd2nLvePq0_CXQqk09H3xre-584F80MpQ6w2Pv15a73v_Ec3biqI_24pBT9n5_9zZ_zBbPD0_z20VmJIiUoVGNM2VNZEtqTeGEqiSBsNZVDkslCmMKsnXlZo7ASpSmaprGKDISC4dyyq72u-vgvzc2Jr30m7AaL7XAWgqJoihH6npPmeBjDNbpdegGCluNoHdu9OhG79zo0c2I5wechiZ07Yf9W_238AsJAWZ3</recordid><startdate>20190425</startdate><enddate>20190425</enddate><creator>Xiao, Cheng-Nian</creator><creator>Senocak, Inanc</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-7788-8827</orcidid><orcidid>https://orcid.org/0000-0003-1967-7583</orcidid></search><sort><creationdate>20190425</creationdate><title>Stability of the Prandtl model for katabatic slope flows</title><author>Xiao, Cheng-Nian ; Senocak, Inanc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-1c7bfc69aae6adc5f2783a02eef8f16725cc5ae98f4fa0e313c8bbbc7ac315f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Base flow</topic><topic>Buoyancy flux</topic><topic>Computer simulation</topic><topic>Density stratification</topic><topic>Direction</topic><topic>Flow stability</topic><topic>Flow structures</topic><topic>Fluid mechanics</topic><topic>Heat</topic><topic>Instability</topic><topic>JFM Rapids</topic><topic>Kinematics</topic><topic>Laminar flow</topic><topic>Mathematical models</topic><topic>Modes</topic><topic>Parameters</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Slope</topic><topic>Slope stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Stratification</topic><topic>Velocity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Cheng-Nian</creatorcontrib><creatorcontrib>Senocak, Inanc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Cheng-Nian</au><au>Senocak, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the Prandtl model for katabatic slope flows</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-04-25</date><risdate>2019</risdate><volume>865</volume><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of
$Ri>0.25$
. At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as
$3\times 10^{-3}$
.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.132</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7788-8827</orcidid><orcidid>https://orcid.org/0000-0003-1967-7583</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-04, Vol.865, Article R2 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2193231256 |
source | Cambridge University Press Journals Complete |
subjects | Base flow Buoyancy flux Computer simulation Density stratification Direction Flow stability Flow structures Fluid mechanics Heat Instability JFM Rapids Kinematics Laminar flow Mathematical models Modes Parameters Prandtl number Reynolds number Slope Slope stability Stability analysis Stability criteria Stratification Velocity Wave propagation |
title | Stability of the Prandtl model for katabatic slope flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20Prandtl%20model%20for%20katabatic%20slope%20flows&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Xiao,%20Cheng-Nian&rft.date=2019-04-25&rft.volume=865&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.132&rft_dat=%3Cproquest_cross%3E2193231256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193231256&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_132&rfr_iscdi=true |