Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations

Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2019-02, Vol.17 (2), p.269-284
Hauptverfasser: Eyiguler, E. Ceren Kalafatoglu, Shim, J. S., Kuznetsova, M.M., Kaymaz, Z., Bowman, B. R., Codrescu, M. V., Solomon, S. C., Fuller‐Rowell, T. J., Ridley, A. J., Mehta, P. M., Sutton, E. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 2
container_start_page 269
container_title Space Weather
container_volume 17
creator Eyiguler, E. Ceren Kalafatoglu
Shim, J. S.
Kuznetsova, M.M.
Kaymaz, Z.
Bowman, B. R.
Codrescu, M. V.
Solomon, S. C.
Fuller‐Rowell, T. J.
Ridley, A. J.
Mehta, P. M.
Sutton, E. K.
description Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.
doi_str_mv 10.1029/2018SW002033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193205762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193205762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</originalsourceid><addsrcrecordid>eNp90D1PwzAQBuAIgUQpbIwMllgJ-Ct2PKJSPqRChdrS0TiJQ12lTrEdUP49icLAxHQn3fPeSRdF5wheI4jFDYYoXawhxJCQg2iEEopjTgQ87HsiYioSdhydeL_tDE0wHUXvr42ywZStsR8gbDRYhNrtwNLsNFhutNvVft8Vk4MX3QSnKnCnrTehBW_KGRVMbT1Y-T79XBe6AsoWYJ557b6G4Wl0VKrK67PfOo5W99Pl5DGezR-eJrezOMcpZDEWeV7mRUFpzlWBMyJSkrIMc6oxobhMlchIqVSiSFYynjBIUs4Q40oxWmhKxtHlsHfv6s9G-yC3deNsd1JiJAiGCWe4U1eDyl3tvdOl3DuzU66VCMr-h_LvDzuOB_5tKt3-a-ViPcUwRawLXQwhq7ySNjjfQ9ExjhAlP2T-e20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193205762</pqid></control><display><type>article</type><title>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</title><source>NASA Technical Reports Server</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><creator>Eyiguler, E. Ceren Kalafatoglu ; Shim, J. S. ; Kuznetsova, M.M. ; Kaymaz, Z. ; Bowman, B. R. ; Codrescu, M. V. ; Solomon, S. C. ; Fuller‐Rowell, T. J. ; Ridley, A. J. ; Mehta, P. M. ; Sutton, E. K.</creator><creatorcontrib>Eyiguler, E. Ceren Kalafatoglu ; Shim, J. S. ; Kuznetsova, M.M. ; Kaymaz, Z. ; Bowman, B. R. ; Codrescu, M. V. ; Solomon, S. C. ; Fuller‐Rowell, T. J. ; Ridley, A. J. ; Mehta, P. M. ; Sutton, E. K.</creatorcontrib><description>Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.</description><identifier>ISSN: 1539-4956</identifier><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1029/2018SW002033</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Geophysical Union</publisher><subject>Atmospheric drag ; Atmospheric models ; Bias ; CHAMP ; Climate ; Climate models ; Climate variations ; Climatology ; Collision avoidance ; Computer simulation ; Density ; Drag ; GEM‐CEDAR challenge ; Geomagnetic storm effects ; Geomagnetic storms ; Geomagnetism ; Ionosphere ; Ionospheric models ; IT models ; Magnetic storms ; Mean square errors ; metrics ; Orbit determination ; Physics ; Root-mean-square errors ; Satellite drag ; Satellite lifetime ; Satellite tracking ; Satellites ; Space Sciences (General) ; Storms ; Thermosphere ; thermospheric neutral density ; validation</subject><ispartof>Space Weather, 2019-02, Vol.17 (2), p.269-284</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</citedby><cites>FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</cites><orcidid>0000-0001-8943-3192 ; 0000-0002-5291-3034 ; 0000-0001-6933-8534 ; 0000-0002-5240-2322 ; 0000-0001-7216-9858 ; 0000-0003-1424-7189 ; 0000-0002-3920-3134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018SW002033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018SW002033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Eyiguler, E. Ceren Kalafatoglu</creatorcontrib><creatorcontrib>Shim, J. S.</creatorcontrib><creatorcontrib>Kuznetsova, M.M.</creatorcontrib><creatorcontrib>Kaymaz, Z.</creatorcontrib><creatorcontrib>Bowman, B. R.</creatorcontrib><creatorcontrib>Codrescu, M. V.</creatorcontrib><creatorcontrib>Solomon, S. C.</creatorcontrib><creatorcontrib>Fuller‐Rowell, T. J.</creatorcontrib><creatorcontrib>Ridley, A. J.</creatorcontrib><creatorcontrib>Mehta, P. M.</creatorcontrib><creatorcontrib>Sutton, E. K.</creatorcontrib><title>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</title><title>Space Weather</title><description>Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.</description><subject>Atmospheric drag</subject><subject>Atmospheric models</subject><subject>Bias</subject><subject>CHAMP</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climate variations</subject><subject>Climatology</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Drag</subject><subject>GEM‐CEDAR challenge</subject><subject>Geomagnetic storm effects</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Ionosphere</subject><subject>Ionospheric models</subject><subject>IT models</subject><subject>Magnetic storms</subject><subject>Mean square errors</subject><subject>metrics</subject><subject>Orbit determination</subject><subject>Physics</subject><subject>Root-mean-square errors</subject><subject>Satellite drag</subject><subject>Satellite lifetime</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Space Sciences (General)</subject><subject>Storms</subject><subject>Thermosphere</subject><subject>thermospheric neutral density</subject><subject>validation</subject><issn>1539-4956</issn><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp90D1PwzAQBuAIgUQpbIwMllgJ-Ct2PKJSPqRChdrS0TiJQ12lTrEdUP49icLAxHQn3fPeSRdF5wheI4jFDYYoXawhxJCQg2iEEopjTgQ87HsiYioSdhydeL_tDE0wHUXvr42ywZStsR8gbDRYhNrtwNLsNFhutNvVft8Vk4MX3QSnKnCnrTehBW_KGRVMbT1Y-T79XBe6AsoWYJ557b6G4Wl0VKrK67PfOo5W99Pl5DGezR-eJrezOMcpZDEWeV7mRUFpzlWBMyJSkrIMc6oxobhMlchIqVSiSFYynjBIUs4Q40oxWmhKxtHlsHfv6s9G-yC3deNsd1JiJAiGCWe4U1eDyl3tvdOl3DuzU66VCMr-h_LvDzuOB_5tKt3-a-ViPcUwRawLXQwhq7ySNjjfQ9ExjhAlP2T-e20</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Eyiguler, E. Ceren Kalafatoglu</creator><creator>Shim, J. S.</creator><creator>Kuznetsova, M.M.</creator><creator>Kaymaz, Z.</creator><creator>Bowman, B. R.</creator><creator>Codrescu, M. V.</creator><creator>Solomon, S. C.</creator><creator>Fuller‐Rowell, T. J.</creator><creator>Ridley, A. J.</creator><creator>Mehta, P. M.</creator><creator>Sutton, E. K.</creator><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8943-3192</orcidid><orcidid>https://orcid.org/0000-0002-5291-3034</orcidid><orcidid>https://orcid.org/0000-0001-6933-8534</orcidid><orcidid>https://orcid.org/0000-0002-5240-2322</orcidid><orcidid>https://orcid.org/0000-0001-7216-9858</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-3920-3134</orcidid></search><sort><creationdate>201902</creationdate><title>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</title><author>Eyiguler, E. Ceren Kalafatoglu ; Shim, J. S. ; Kuznetsova, M.M. ; Kaymaz, Z. ; Bowman, B. R. ; Codrescu, M. V. ; Solomon, S. C. ; Fuller‐Rowell, T. J. ; Ridley, A. J. ; Mehta, P. M. ; Sutton, E. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric drag</topic><topic>Atmospheric models</topic><topic>Bias</topic><topic>CHAMP</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climate variations</topic><topic>Climatology</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Drag</topic><topic>GEM‐CEDAR challenge</topic><topic>Geomagnetic storm effects</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Ionosphere</topic><topic>Ionospheric models</topic><topic>IT models</topic><topic>Magnetic storms</topic><topic>Mean square errors</topic><topic>metrics</topic><topic>Orbit determination</topic><topic>Physics</topic><topic>Root-mean-square errors</topic><topic>Satellite drag</topic><topic>Satellite lifetime</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Space Sciences (General)</topic><topic>Storms</topic><topic>Thermosphere</topic><topic>thermospheric neutral density</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyiguler, E. Ceren Kalafatoglu</creatorcontrib><creatorcontrib>Shim, J. S.</creatorcontrib><creatorcontrib>Kuznetsova, M.M.</creatorcontrib><creatorcontrib>Kaymaz, Z.</creatorcontrib><creatorcontrib>Bowman, B. R.</creatorcontrib><creatorcontrib>Codrescu, M. V.</creatorcontrib><creatorcontrib>Solomon, S. C.</creatorcontrib><creatorcontrib>Fuller‐Rowell, T. J.</creatorcontrib><creatorcontrib>Ridley, A. J.</creatorcontrib><creatorcontrib>Mehta, P. M.</creatorcontrib><creatorcontrib>Sutton, E. K.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyiguler, E. Ceren Kalafatoglu</au><au>Shim, J. S.</au><au>Kuznetsova, M.M.</au><au>Kaymaz, Z.</au><au>Bowman, B. R.</au><au>Codrescu, M. V.</au><au>Solomon, S. C.</au><au>Fuller‐Rowell, T. J.</au><au>Ridley, A. J.</au><au>Mehta, P. M.</au><au>Sutton, E. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</atitle><jtitle>Space Weather</jtitle><date>2019-02</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>269</spage><epage>284</epage><pages>269-284</pages><issn>1539-4956</issn><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.</abstract><cop>Goddard Space Flight Center</cop><pub>American Geophysical Union</pub><doi>10.1029/2018SW002033</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8943-3192</orcidid><orcidid>https://orcid.org/0000-0002-5291-3034</orcidid><orcidid>https://orcid.org/0000-0001-6933-8534</orcidid><orcidid>https://orcid.org/0000-0002-5240-2322</orcidid><orcidid>https://orcid.org/0000-0001-7216-9858</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-3920-3134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-4956
ispartof Space Weather, 2019-02, Vol.17 (2), p.269-284
issn 1539-4956
1542-7390
1539-4964
1542-7390
language eng
recordid cdi_proquest_journals_2193205762
source NASA Technical Reports Server; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals
subjects Atmospheric drag
Atmospheric models
Bias
CHAMP
Climate
Climate models
Climate variations
Climatology
Collision avoidance
Computer simulation
Density
Drag
GEM‐CEDAR challenge
Geomagnetic storm effects
Geomagnetic storms
Geomagnetism
Ionosphere
Ionospheric models
IT models
Magnetic storms
Mean square errors
metrics
Orbit determination
Physics
Root-mean-square errors
Satellite drag
Satellite lifetime
Satellite tracking
Satellites
Space Sciences (General)
Storms
Thermosphere
thermospheric neutral density
validation
title Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Storm%20Time%20Thermospheric%20Neutral%20Density%20Variations%20Using%20Model%20and%20Observations&rft.jtitle=Space%20Weather&rft.au=Eyiguler,%20E.%20Ceren%20Kalafatoglu&rft.date=2019-02&rft.volume=17&rft.issue=2&rft.spage=269&rft.epage=284&rft.pages=269-284&rft.issn=1539-4956&rft.eissn=1542-7390&rft_id=info:doi/10.1029/2018SW002033&rft_dat=%3Cproquest_cross%3E2193205762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193205762&rft_id=info:pmid/&rfr_iscdi=true