Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations
Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and three...
Gespeichert in:
Veröffentlicht in: | Space Weather 2019-02, Vol.17 (2), p.269-284 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 2 |
container_start_page | 269 |
container_title | Space Weather |
container_volume | 17 |
creator | Eyiguler, E. Ceren Kalafatoglu Shim, J. S. Kuznetsova, M.M. Kaymaz, Z. Bowman, B. R. Codrescu, M. V. Solomon, S. C. Fuller‐Rowell, T. J. Ridley, A. J. Mehta, P. M. Sutton, E. K. |
description | Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density. |
doi_str_mv | 10.1029/2018SW002033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193205762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193205762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</originalsourceid><addsrcrecordid>eNp90D1PwzAQBuAIgUQpbIwMllgJ-Ct2PKJSPqRChdrS0TiJQ12lTrEdUP49icLAxHQn3fPeSRdF5wheI4jFDYYoXawhxJCQg2iEEopjTgQ87HsiYioSdhydeL_tDE0wHUXvr42ywZStsR8gbDRYhNrtwNLsNFhutNvVft8Vk4MX3QSnKnCnrTehBW_KGRVMbT1Y-T79XBe6AsoWYJ557b6G4Wl0VKrK67PfOo5W99Pl5DGezR-eJrezOMcpZDEWeV7mRUFpzlWBMyJSkrIMc6oxobhMlchIqVSiSFYynjBIUs4Q40oxWmhKxtHlsHfv6s9G-yC3deNsd1JiJAiGCWe4U1eDyl3tvdOl3DuzU66VCMr-h_LvDzuOB_5tKt3-a-ViPcUwRawLXQwhq7ySNjjfQ9ExjhAlP2T-e20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193205762</pqid></control><display><type>article</type><title>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</title><source>NASA Technical Reports Server</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><creator>Eyiguler, E. Ceren Kalafatoglu ; Shim, J. S. ; Kuznetsova, M.M. ; Kaymaz, Z. ; Bowman, B. R. ; Codrescu, M. V. ; Solomon, S. C. ; Fuller‐Rowell, T. J. ; Ridley, A. J. ; Mehta, P. M. ; Sutton, E. K.</creator><creatorcontrib>Eyiguler, E. Ceren Kalafatoglu ; Shim, J. S. ; Kuznetsova, M.M. ; Kaymaz, Z. ; Bowman, B. R. ; Codrescu, M. V. ; Solomon, S. C. ; Fuller‐Rowell, T. J. ; Ridley, A. J. ; Mehta, P. M. ; Sutton, E. K.</creatorcontrib><description>Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.</description><identifier>ISSN: 1539-4956</identifier><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1029/2018SW002033</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Geophysical Union</publisher><subject>Atmospheric drag ; Atmospheric models ; Bias ; CHAMP ; Climate ; Climate models ; Climate variations ; Climatology ; Collision avoidance ; Computer simulation ; Density ; Drag ; GEM‐CEDAR challenge ; Geomagnetic storm effects ; Geomagnetic storms ; Geomagnetism ; Ionosphere ; Ionospheric models ; IT models ; Magnetic storms ; Mean square errors ; metrics ; Orbit determination ; Physics ; Root-mean-square errors ; Satellite drag ; Satellite lifetime ; Satellite tracking ; Satellites ; Space Sciences (General) ; Storms ; Thermosphere ; thermospheric neutral density ; validation</subject><ispartof>Space Weather, 2019-02, Vol.17 (2), p.269-284</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</citedby><cites>FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</cites><orcidid>0000-0001-8943-3192 ; 0000-0002-5291-3034 ; 0000-0001-6933-8534 ; 0000-0002-5240-2322 ; 0000-0001-7216-9858 ; 0000-0003-1424-7189 ; 0000-0002-3920-3134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018SW002033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018SW002033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Eyiguler, E. Ceren Kalafatoglu</creatorcontrib><creatorcontrib>Shim, J. S.</creatorcontrib><creatorcontrib>Kuznetsova, M.M.</creatorcontrib><creatorcontrib>Kaymaz, Z.</creatorcontrib><creatorcontrib>Bowman, B. R.</creatorcontrib><creatorcontrib>Codrescu, M. V.</creatorcontrib><creatorcontrib>Solomon, S. C.</creatorcontrib><creatorcontrib>Fuller‐Rowell, T. J.</creatorcontrib><creatorcontrib>Ridley, A. J.</creatorcontrib><creatorcontrib>Mehta, P. M.</creatorcontrib><creatorcontrib>Sutton, E. K.</creatorcontrib><title>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</title><title>Space Weather</title><description>Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.</description><subject>Atmospheric drag</subject><subject>Atmospheric models</subject><subject>Bias</subject><subject>CHAMP</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climate variations</subject><subject>Climatology</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Drag</subject><subject>GEM‐CEDAR challenge</subject><subject>Geomagnetic storm effects</subject><subject>Geomagnetic storms</subject><subject>Geomagnetism</subject><subject>Ionosphere</subject><subject>Ionospheric models</subject><subject>IT models</subject><subject>Magnetic storms</subject><subject>Mean square errors</subject><subject>metrics</subject><subject>Orbit determination</subject><subject>Physics</subject><subject>Root-mean-square errors</subject><subject>Satellite drag</subject><subject>Satellite lifetime</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Space Sciences (General)</subject><subject>Storms</subject><subject>Thermosphere</subject><subject>thermospheric neutral density</subject><subject>validation</subject><issn>1539-4956</issn><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp90D1PwzAQBuAIgUQpbIwMllgJ-Ct2PKJSPqRChdrS0TiJQ12lTrEdUP49icLAxHQn3fPeSRdF5wheI4jFDYYoXawhxJCQg2iEEopjTgQ87HsiYioSdhydeL_tDE0wHUXvr42ywZStsR8gbDRYhNrtwNLsNFhutNvVft8Vk4MX3QSnKnCnrTehBW_KGRVMbT1Y-T79XBe6AsoWYJ557b6G4Wl0VKrK67PfOo5W99Pl5DGezR-eJrezOMcpZDEWeV7mRUFpzlWBMyJSkrIMc6oxobhMlchIqVSiSFYynjBIUs4Q40oxWmhKxtHlsHfv6s9G-yC3deNsd1JiJAiGCWe4U1eDyl3tvdOl3DuzU66VCMr-h_LvDzuOB_5tKt3-a-ViPcUwRawLXQwhq7ySNjjfQ9ExjhAlP2T-e20</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Eyiguler, E. Ceren Kalafatoglu</creator><creator>Shim, J. S.</creator><creator>Kuznetsova, M.M.</creator><creator>Kaymaz, Z.</creator><creator>Bowman, B. R.</creator><creator>Codrescu, M. V.</creator><creator>Solomon, S. C.</creator><creator>Fuller‐Rowell, T. J.</creator><creator>Ridley, A. J.</creator><creator>Mehta, P. M.</creator><creator>Sutton, E. K.</creator><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8943-3192</orcidid><orcidid>https://orcid.org/0000-0002-5291-3034</orcidid><orcidid>https://orcid.org/0000-0001-6933-8534</orcidid><orcidid>https://orcid.org/0000-0002-5240-2322</orcidid><orcidid>https://orcid.org/0000-0001-7216-9858</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-3920-3134</orcidid></search><sort><creationdate>201902</creationdate><title>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</title><author>Eyiguler, E. Ceren Kalafatoglu ; Shim, J. S. ; Kuznetsova, M.M. ; Kaymaz, Z. ; Bowman, B. R. ; Codrescu, M. V. ; Solomon, S. C. ; Fuller‐Rowell, T. J. ; Ridley, A. J. ; Mehta, P. M. ; Sutton, E. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2806-29ccfcdd44c7ad2b398386b274e2342f8a9b3faa5a3bf675603876167aa64de43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric drag</topic><topic>Atmospheric models</topic><topic>Bias</topic><topic>CHAMP</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climate variations</topic><topic>Climatology</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Drag</topic><topic>GEM‐CEDAR challenge</topic><topic>Geomagnetic storm effects</topic><topic>Geomagnetic storms</topic><topic>Geomagnetism</topic><topic>Ionosphere</topic><topic>Ionospheric models</topic><topic>IT models</topic><topic>Magnetic storms</topic><topic>Mean square errors</topic><topic>metrics</topic><topic>Orbit determination</topic><topic>Physics</topic><topic>Root-mean-square errors</topic><topic>Satellite drag</topic><topic>Satellite lifetime</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Space Sciences (General)</topic><topic>Storms</topic><topic>Thermosphere</topic><topic>thermospheric neutral density</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eyiguler, E. Ceren Kalafatoglu</creatorcontrib><creatorcontrib>Shim, J. S.</creatorcontrib><creatorcontrib>Kuznetsova, M.M.</creatorcontrib><creatorcontrib>Kaymaz, Z.</creatorcontrib><creatorcontrib>Bowman, B. R.</creatorcontrib><creatorcontrib>Codrescu, M. V.</creatorcontrib><creatorcontrib>Solomon, S. C.</creatorcontrib><creatorcontrib>Fuller‐Rowell, T. J.</creatorcontrib><creatorcontrib>Ridley, A. J.</creatorcontrib><creatorcontrib>Mehta, P. M.</creatorcontrib><creatorcontrib>Sutton, E. K.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eyiguler, E. Ceren Kalafatoglu</au><au>Shim, J. S.</au><au>Kuznetsova, M.M.</au><au>Kaymaz, Z.</au><au>Bowman, B. R.</au><au>Codrescu, M. V.</au><au>Solomon, S. C.</au><au>Fuller‐Rowell, T. J.</au><au>Ridley, A. J.</au><au>Mehta, P. M.</au><au>Sutton, E. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations</atitle><jtitle>Space Weather</jtitle><date>2019-02</date><risdate>2019</risdate><volume>17</volume><issue>2</issue><spage>269</spage><epage>284</epage><pages>269-284</pages><issn>1539-4956</issn><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>Accurate determination of thermospheric neutral density holds crucial importance for satellited rag calculations. The problem is twofold and involves the correct estimation of the quiet time climatology and storm time variations. In this work, neutral density estimations from two empirical and threephysics based models of the ionosphere thermosphere are compared with the neutral densities along the Challenging MicroSatellite Payload satellite track for six geomagnetic storms. Storm time variations are extracted from neutral density by (1) subtracting the mean difference between model and observation (bias),(2) setting climatological variations to zero, and (3) multiplying model data with the quiet time ratio between the model and observation. Several metrics are employed to evaluate the model performances. We find that the removal of bias or climatology reveals actual performance of the model in simulating the storm time variations. When bias is removed, depending on event and model, storm time errors in neutral density can decrease by an amount of 113% or can increase by an amount of 12% with respect to error in models with quiet time bias. It is shown that using only average and maximum values of neutral density to determine the model performances can be misleading since a model can estimate the averages fairly well but may not capture the maximum value or vice versa. Since each of the metrics used for determining model performances provides different aspects of the error, among these, we suggest employing mean absolute error, prediction efficiency, and normalized root mean square error together as a standard set ofmetrics for the neutral density.</abstract><cop>Goddard Space Flight Center</cop><pub>American Geophysical Union</pub><doi>10.1029/2018SW002033</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8943-3192</orcidid><orcidid>https://orcid.org/0000-0002-5291-3034</orcidid><orcidid>https://orcid.org/0000-0001-6933-8534</orcidid><orcidid>https://orcid.org/0000-0002-5240-2322</orcidid><orcidid>https://orcid.org/0000-0001-7216-9858</orcidid><orcidid>https://orcid.org/0000-0003-1424-7189</orcidid><orcidid>https://orcid.org/0000-0002-3920-3134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-4956 |
ispartof | Space Weather, 2019-02, Vol.17 (2), p.269-284 |
issn | 1539-4956 1542-7390 1539-4964 1542-7390 |
language | eng |
recordid | cdi_proquest_journals_2193205762 |
source | NASA Technical Reports Server; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals |
subjects | Atmospheric drag Atmospheric models Bias CHAMP Climate Climate models Climate variations Climatology Collision avoidance Computer simulation Density Drag GEM‐CEDAR challenge Geomagnetic storm effects Geomagnetic storms Geomagnetism Ionosphere Ionospheric models IT models Magnetic storms Mean square errors metrics Orbit determination Physics Root-mean-square errors Satellite drag Satellite lifetime Satellite tracking Satellites Space Sciences (General) Storms Thermosphere thermospheric neutral density validation |
title | Quantifying the Storm Time Thermospheric Neutral Density Variations Using Model and Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Storm%20Time%20Thermospheric%20Neutral%20Density%20Variations%20Using%20Model%20and%20Observations&rft.jtitle=Space%20Weather&rft.au=Eyiguler,%20E.%20Ceren%20Kalafatoglu&rft.date=2019-02&rft.volume=17&rft.issue=2&rft.spage=269&rft.epage=284&rft.pages=269-284&rft.issn=1539-4956&rft.eissn=1542-7390&rft_id=info:doi/10.1029/2018SW002033&rft_dat=%3Cproquest_cross%3E2193205762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193205762&rft_id=info:pmid/&rfr_iscdi=true |