Hidden Markov Model for Identification of Different Marks on Human Body in Forensic Perspective

This paper proposes a computational forensic methodology which identify and classify different marks on the human body using Hidden Markov model. The methodology gives an efficient and effective computerized approach for the characteristics of different marks such as birthmarks, burntmarks, tattoos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of modern education and computer science 2019-03, Vol.11 (3), p.38-45
Hauptverfasser: G Savakar, Dayanand, Kannur, Anil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 3
container_start_page 38
container_title International journal of modern education and computer science
container_volume 11
creator G Savakar, Dayanand
Kannur, Anil
description This paper proposes a computational forensic methodology which identify and classify different marks on the human body using Hidden Markov model. The methodology gives an efficient and effective computerized approach for the characteristics of different marks such as birthmarks, burntmarks, tattoos and weapons’ wounds found on human body. This proposed method will be a computationally effective substitution for the traditional forensic method in identifying the body marks in crime investigation of homicidal cases. Hidden Markov Model (HMM) is statistical and logical tool suitable for this identification. The marks on human body describe different patterns with characteristics that are helpful in identification. The experimental results achieved for identification of different marks with an average accuracy of 94.6%, on the available database of 400 images that includes four categories: Birthmarks, Burntmarks, Tattoos and weapons’ wounds (100 images of each marks). The methodology gives the better combination of features (color, texture and shape), which are extracted for the identification of marks on human body for the purpose of computational forensic science.
doi_str_mv 10.5815/ijmecs.2019.03.06
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193195387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193195387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-370091bfebbd1266b662a25af099554b6c001f5b9bc8730f8e345b3a5b913c7c3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGp_gLeA510nSZNtjlqtLbToQcFbSLIJpLabmmwL_femVpzLDN-8eQMPoVsCNZ8Qfh_WW2dzTYHIGlgN4gINKDS8AtJ8Xv7PglyjUc5rKCXkmIIcIDUPbes6vNLpKx7wKrZug31MeFFoH3ywug-xw9Hjp-C9S4X-ijMudL7f6g4_xvaIQ4dnsWxzsPjNpbxztg8Hd4OuvN5kN_rrQ_Qxe36fzqvl68ti-rCsLGVEVKwBkMR4Z0xLqBBGCKop1x6k5HxshAUgnhtp7KRh4CeOjblhuhDCbGPZEN2dfXcpfu9d7tU67lNXXipKJCOSs3I4ROSssinmnJxXuxS2Oh0VAXWKUp2jVKcoFTAFgv0ATvtnrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193195387</pqid></control><display><type>article</type><title>Hidden Markov Model for Identification of Different Marks on Human Body in Forensic Perspective</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>G Savakar, Dayanand ; Kannur, Anil</creator><creatorcontrib>G Savakar, Dayanand ; Kannur, Anil ; Department of Computer Science, Rani Channamma University, Belagavi India</creatorcontrib><description>This paper proposes a computational forensic methodology which identify and classify different marks on the human body using Hidden Markov model. The methodology gives an efficient and effective computerized approach for the characteristics of different marks such as birthmarks, burntmarks, tattoos and weapons’ wounds found on human body. This proposed method will be a computationally effective substitution for the traditional forensic method in identifying the body marks in crime investigation of homicidal cases. Hidden Markov Model (HMM) is statistical and logical tool suitable for this identification. The marks on human body describe different patterns with characteristics that are helpful in identification. The experimental results achieved for identification of different marks with an average accuracy of 94.6%, on the available database of 400 images that includes four categories: Birthmarks, Burntmarks, Tattoos and weapons’ wounds (100 images of each marks). The methodology gives the better combination of features (color, texture and shape), which are extracted for the identification of marks on human body for the purpose of computational forensic science.</description><identifier>ISSN: 2075-0161</identifier><identifier>EISSN: 2075-017X</identifier><identifier>DOI: 10.5815/ijmecs.2019.03.06</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><subject>Computation ; Crime ; Feature extraction ; Forensic science ; Human body ; Identification ; Markov analysis ; Markov chains ; Markov Processes ; Methodology ; Persuasive Discourse ; Tattoos ; Weapons</subject><ispartof>International journal of modern education and computer science, 2019-03, Vol.11 (3), p.38-45</ispartof><rights>2019. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-370091bfebbd1266b662a25af099554b6c001f5b9bc8730f8e345b3a5b913c7c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>G Savakar, Dayanand</creatorcontrib><creatorcontrib>Kannur, Anil</creatorcontrib><creatorcontrib>Department of Computer Science, Rani Channamma University, Belagavi India</creatorcontrib><title>Hidden Markov Model for Identification of Different Marks on Human Body in Forensic Perspective</title><title>International journal of modern education and computer science</title><description>This paper proposes a computational forensic methodology which identify and classify different marks on the human body using Hidden Markov model. The methodology gives an efficient and effective computerized approach for the characteristics of different marks such as birthmarks, burntmarks, tattoos and weapons’ wounds found on human body. This proposed method will be a computationally effective substitution for the traditional forensic method in identifying the body marks in crime investigation of homicidal cases. Hidden Markov Model (HMM) is statistical and logical tool suitable for this identification. The marks on human body describe different patterns with characteristics that are helpful in identification. The experimental results achieved for identification of different marks with an average accuracy of 94.6%, on the available database of 400 images that includes four categories: Birthmarks, Burntmarks, Tattoos and weapons’ wounds (100 images of each marks). The methodology gives the better combination of features (color, texture and shape), which are extracted for the identification of marks on human body for the purpose of computational forensic science.</description><subject>Computation</subject><subject>Crime</subject><subject>Feature extraction</subject><subject>Forensic science</subject><subject>Human body</subject><subject>Identification</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov Processes</subject><subject>Methodology</subject><subject>Persuasive Discourse</subject><subject>Tattoos</subject><subject>Weapons</subject><issn>2075-0161</issn><issn>2075-017X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kEFLAzEQhYMoWGp_gLeA510nSZNtjlqtLbToQcFbSLIJpLabmmwL_femVpzLDN-8eQMPoVsCNZ8Qfh_WW2dzTYHIGlgN4gINKDS8AtJ8Xv7PglyjUc5rKCXkmIIcIDUPbes6vNLpKx7wKrZug31MeFFoH3ywug-xw9Hjp-C9S4X-ijMudL7f6g4_xvaIQ4dnsWxzsPjNpbxztg8Hd4OuvN5kN_rrQ_Qxe36fzqvl68ti-rCsLGVEVKwBkMR4Z0xLqBBGCKop1x6k5HxshAUgnhtp7KRh4CeOjblhuhDCbGPZEN2dfXcpfu9d7tU67lNXXipKJCOSs3I4ROSssinmnJxXuxS2Oh0VAXWKUp2jVKcoFTAFgv0ATvtnrg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>G Savakar, Dayanand</creator><creator>Kannur, Anil</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>M0P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20190301</creationdate><title>Hidden Markov Model for Identification of Different Marks on Human Body in Forensic Perspective</title><author>G Savakar, Dayanand ; Kannur, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-370091bfebbd1266b662a25af099554b6c001f5b9bc8730f8e345b3a5b913c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computation</topic><topic>Crime</topic><topic>Feature extraction</topic><topic>Forensic science</topic><topic>Human body</topic><topic>Identification</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov Processes</topic><topic>Methodology</topic><topic>Persuasive Discourse</topic><topic>Tattoos</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>G Savakar, Dayanand</creatorcontrib><creatorcontrib>Kannur, Anil</creatorcontrib><creatorcontrib>Department of Computer Science, Rani Channamma University, Belagavi India</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Education Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>ProQuest Education Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of modern education and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G Savakar, Dayanand</au><au>Kannur, Anil</au><aucorp>Department of Computer Science, Rani Channamma University, Belagavi India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden Markov Model for Identification of Different Marks on Human Body in Forensic Perspective</atitle><jtitle>International journal of modern education and computer science</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>2075-0161</issn><eissn>2075-017X</eissn><abstract>This paper proposes a computational forensic methodology which identify and classify different marks on the human body using Hidden Markov model. The methodology gives an efficient and effective computerized approach for the characteristics of different marks such as birthmarks, burntmarks, tattoos and weapons’ wounds found on human body. This proposed method will be a computationally effective substitution for the traditional forensic method in identifying the body marks in crime investigation of homicidal cases. Hidden Markov Model (HMM) is statistical and logical tool suitable for this identification. The marks on human body describe different patterns with characteristics that are helpful in identification. The experimental results achieved for identification of different marks with an average accuracy of 94.6%, on the available database of 400 images that includes four categories: Birthmarks, Burntmarks, Tattoos and weapons’ wounds (100 images of each marks). The methodology gives the better combination of features (color, texture and shape), which are extracted for the identification of marks on human body for the purpose of computational forensic science.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijmecs.2019.03.06</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-0161
ispartof International journal of modern education and computer science, 2019-03, Vol.11 (3), p.38-45
issn 2075-0161
2075-017X
language eng
recordid cdi_proquest_journals_2193195387
source EZB-FREE-00999 freely available EZB journals
subjects Computation
Crime
Feature extraction
Forensic science
Human body
Identification
Markov analysis
Markov chains
Markov Processes
Methodology
Persuasive Discourse
Tattoos
Weapons
title Hidden Markov Model for Identification of Different Marks on Human Body in Forensic Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20Markov%20Model%20for%20Identification%20of%20Different%20Marks%20on%20Human%20Body%20in%20Forensic%20Perspective&rft.jtitle=International%20journal%20of%20modern%20education%20and%20computer%20science&rft.au=G%20Savakar,%20Dayanand&rft.aucorp=Department%20of%20Computer%20Science,%20Rani%20Channamma%20University,%20Belagavi%20India&rft.date=2019-03-01&rft.volume=11&rft.issue=3&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=2075-0161&rft.eissn=2075-017X&rft_id=info:doi/10.5815/ijmecs.2019.03.06&rft_dat=%3Cproquest_cross%3E2193195387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193195387&rft_id=info:pmid/&rfr_iscdi=true