Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property

ABSTRACT To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2019-06, Vol.136 (24), p.n/a
Hauptverfasser: Zhou, Jinsheng, Ye, Lin, Lin, Yanming, Wang, Ling, Zhou, Li, Hu, Huiyuan, Zhang, Qilong, Yang, Hui, Luo, Zhongkuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Journal of applied polymer science
container_volume 136
creator Zhou, Jinsheng
Ye, Lin
Lin, Yanming
Wang, Ling
Zhou, Li
Hu, Huiyuan
Zhang, Qilong
Yang, Hui
Luo, Zhongkuan
description ABSTRACT To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.
doi_str_mv 10.1002/app.47653
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193179251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193179251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI65_ESZZR1QJSJSIobC03sVtXaRwcp1VYcQTOyEkwhC2bGWnmm3kzD4BrjCYYITIVTTMJYxbREzDCKI2DkJHkFIx8DwdJmkbn4KJtdwhhHCE2Auq5s0oUEu5NqZUuhNOmhvlrBrd9ac1GVvCo3Ra---ik9U1dwIMWMJ-vvj4-n7LFCjoD9b6x5iCh20ooaqeV6Spdb6CvNtK6_hKcKVG18uovj8HLYr6a3QfLx7uHWbYMCkpDGjAS-cNYghBbizJZx1SwkpSFRCyOQilkTNZRSFSUJkQSleKSqlgVSAlaEv8dHYObYa8Xfutk6_jOdLb2kpzglOI4JRH21O1AFda0rZWKN1bvhe05RvzHRu5t5L82enY6sEddyf5_kGd5Pkx8A4DAdVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193179251</pqid></control><display><type>article</type><title>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Jinsheng ; Ye, Lin ; Lin, Yanming ; Wang, Ling ; Zhou, Li ; Hu, Huiyuan ; Zhang, Qilong ; Yang, Hui ; Luo, Zhongkuan</creator><creatorcontrib>Zhou, Jinsheng ; Ye, Lin ; Lin, Yanming ; Wang, Ling ; Zhou, Li ; Hu, Huiyuan ; Zhang, Qilong ; Yang, Hui ; Luo, Zhongkuan</creatorcontrib><description>ABSTRACT To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.47653</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH) ; Addition polymerization ; Ammonium hydroxide ; Antifouling ; Biocompatibility ; Biomedical materials ; Chain transfer ; Electron transfer ; Grafting ; Gravimetric analysis ; Hydrogels ; Materials science ; Organic light emitting diodes ; photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT) ; Polymers ; Polyvinyl alcohol ; polyvinyl alcohol (PVA) ; Thermodynamic properties ; Toxicity ; Triethylamine ; Zwitterions</subject><ispartof>Journal of applied polymer science, 2019-06, Vol.136 (24), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</citedby><cites>FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</cites><orcidid>0000-0003-2283-1772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.47653$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.47653$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Jinsheng</creatorcontrib><creatorcontrib>Ye, Lin</creatorcontrib><creatorcontrib>Lin, Yanming</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhou, Li</creatorcontrib><creatorcontrib>Hu, Huiyuan</creatorcontrib><creatorcontrib>Zhang, Qilong</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Luo, Zhongkuan</creatorcontrib><title>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</title><title>Journal of applied polymer science</title><description>ABSTRACT To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.</description><subject>[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH)</subject><subject>Addition polymerization</subject><subject>Ammonium hydroxide</subject><subject>Antifouling</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chain transfer</subject><subject>Electron transfer</subject><subject>Grafting</subject><subject>Gravimetric analysis</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Organic light emitting diodes</subject><subject>photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT)</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>polyvinyl alcohol (PVA)</subject><subject>Thermodynamic properties</subject><subject>Toxicity</subject><subject>Triethylamine</subject><subject>Zwitterions</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI65_ESZZR1QJSJSIobC03sVtXaRwcp1VYcQTOyEkwhC2bGWnmm3kzD4BrjCYYITIVTTMJYxbREzDCKI2DkJHkFIx8DwdJmkbn4KJtdwhhHCE2Auq5s0oUEu5NqZUuhNOmhvlrBrd9ac1GVvCo3Ra---ik9U1dwIMWMJ-vvj4-n7LFCjoD9b6x5iCh20ooaqeV6Spdb6CvNtK6_hKcKVG18uovj8HLYr6a3QfLx7uHWbYMCkpDGjAS-cNYghBbizJZx1SwkpSFRCyOQilkTNZRSFSUJkQSleKSqlgVSAlaEv8dHYObYa8Xfutk6_jOdLb2kpzglOI4JRH21O1AFda0rZWKN1bvhe05RvzHRu5t5L82enY6sEddyf5_kGd5Pkx8A4DAdVc</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Zhou, Jinsheng</creator><creator>Ye, Lin</creator><creator>Lin, Yanming</creator><creator>Wang, Ling</creator><creator>Zhou, Li</creator><creator>Hu, Huiyuan</creator><creator>Zhang, Qilong</creator><creator>Yang, Hui</creator><creator>Luo, Zhongkuan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2283-1772</orcidid></search><sort><creationdate>20190620</creationdate><title>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</title><author>Zhou, Jinsheng ; Ye, Lin ; Lin, Yanming ; Wang, Ling ; Zhou, Li ; Hu, Huiyuan ; Zhang, Qilong ; Yang, Hui ; Luo, Zhongkuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH)</topic><topic>Addition polymerization</topic><topic>Ammonium hydroxide</topic><topic>Antifouling</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chain transfer</topic><topic>Electron transfer</topic><topic>Grafting</topic><topic>Gravimetric analysis</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Organic light emitting diodes</topic><topic>photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT)</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>polyvinyl alcohol (PVA)</topic><topic>Thermodynamic properties</topic><topic>Toxicity</topic><topic>Triethylamine</topic><topic>Zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jinsheng</creatorcontrib><creatorcontrib>Ye, Lin</creatorcontrib><creatorcontrib>Lin, Yanming</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhou, Li</creatorcontrib><creatorcontrib>Hu, Huiyuan</creatorcontrib><creatorcontrib>Zhang, Qilong</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Luo, Zhongkuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jinsheng</au><au>Ye, Lin</au><au>Lin, Yanming</au><au>Wang, Ling</au><au>Zhou, Li</au><au>Hu, Huiyuan</au><au>Zhang, Qilong</au><au>Yang, Hui</au><au>Luo, Zhongkuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</atitle><jtitle>Journal of applied polymer science</jtitle><date>2019-06-20</date><risdate>2019</risdate><volume>136</volume><issue>24</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.47653</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2283-1772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2019-06, Vol.136 (24), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2193179251
source Wiley Online Library Journals Frontfile Complete
subjects [2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH)
Addition polymerization
Ammonium hydroxide
Antifouling
Biocompatibility
Biomedical materials
Chain transfer
Electron transfer
Grafting
Gravimetric analysis
Hydrogels
Materials science
Organic light emitting diodes
photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT)
Polymers
Polyvinyl alcohol
polyvinyl alcohol (PVA)
Thermodynamic properties
Toxicity
Triethylamine
Zwitterions
title Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20modification%20PVA%20hydrogel%20with%20zwitterionic%20via%20PET%E2%80%90RAFT%20to%20improve%20the%20antifouling%20property&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zhou,%20Jinsheng&rft.date=2019-06-20&rft.volume=136&rft.issue=24&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.47653&rft_dat=%3Cproquest_cross%3E2193179251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193179251&rft_id=info:pmid/&rfr_iscdi=true