Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property
ABSTRACT To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2019-06, Vol.136 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 136 |
creator | Zhou, Jinsheng Ye, Lin Lin, Yanming Wang, Ling Zhou, Li Hu, Huiyuan Zhang, Qilong Yang, Hui Luo, Zhongkuan |
description | ABSTRACT
To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653. |
doi_str_mv | 10.1002/app.47653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193179251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193179251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI65_ESZZR1QJSJSIobC03sVtXaRwcp1VYcQTOyEkwhC2bGWnmm3kzD4BrjCYYITIVTTMJYxbREzDCKI2DkJHkFIx8DwdJmkbn4KJtdwhhHCE2Auq5s0oUEu5NqZUuhNOmhvlrBrd9ac1GVvCo3Ra---ik9U1dwIMWMJ-vvj4-n7LFCjoD9b6x5iCh20ooaqeV6Spdb6CvNtK6_hKcKVG18uovj8HLYr6a3QfLx7uHWbYMCkpDGjAS-cNYghBbizJZx1SwkpSFRCyOQilkTNZRSFSUJkQSleKSqlgVSAlaEv8dHYObYa8Xfutk6_jOdLb2kpzglOI4JRH21O1AFda0rZWKN1bvhe05RvzHRu5t5L82enY6sEddyf5_kGd5Pkx8A4DAdVc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193179251</pqid></control><display><type>article</type><title>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Jinsheng ; Ye, Lin ; Lin, Yanming ; Wang, Ling ; Zhou, Li ; Hu, Huiyuan ; Zhang, Qilong ; Yang, Hui ; Luo, Zhongkuan</creator><creatorcontrib>Zhou, Jinsheng ; Ye, Lin ; Lin, Yanming ; Wang, Ling ; Zhou, Li ; Hu, Huiyuan ; Zhang, Qilong ; Yang, Hui ; Luo, Zhongkuan</creatorcontrib><description>ABSTRACT
To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.47653</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH) ; Addition polymerization ; Ammonium hydroxide ; Antifouling ; Biocompatibility ; Biomedical materials ; Chain transfer ; Electron transfer ; Grafting ; Gravimetric analysis ; Hydrogels ; Materials science ; Organic light emitting diodes ; photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT) ; Polymers ; Polyvinyl alcohol ; polyvinyl alcohol (PVA) ; Thermodynamic properties ; Toxicity ; Triethylamine ; Zwitterions</subject><ispartof>Journal of applied polymer science, 2019-06, Vol.136 (24), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</citedby><cites>FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</cites><orcidid>0000-0003-2283-1772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.47653$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.47653$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Jinsheng</creatorcontrib><creatorcontrib>Ye, Lin</creatorcontrib><creatorcontrib>Lin, Yanming</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhou, Li</creatorcontrib><creatorcontrib>Hu, Huiyuan</creatorcontrib><creatorcontrib>Zhang, Qilong</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Luo, Zhongkuan</creatorcontrib><title>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</title><title>Journal of applied polymer science</title><description>ABSTRACT
To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.</description><subject>[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH)</subject><subject>Addition polymerization</subject><subject>Ammonium hydroxide</subject><subject>Antifouling</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chain transfer</subject><subject>Electron transfer</subject><subject>Grafting</subject><subject>Gravimetric analysis</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Organic light emitting diodes</subject><subject>photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT)</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>polyvinyl alcohol (PVA)</subject><subject>Thermodynamic properties</subject><subject>Toxicity</subject><subject>Triethylamine</subject><subject>Zwitterions</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI65_ESZZR1QJSJSIobC03sVtXaRwcp1VYcQTOyEkwhC2bGWnmm3kzD4BrjCYYITIVTTMJYxbREzDCKI2DkJHkFIx8DwdJmkbn4KJtdwhhHCE2Auq5s0oUEu5NqZUuhNOmhvlrBrd9ac1GVvCo3Ra---ik9U1dwIMWMJ-vvj4-n7LFCjoD9b6x5iCh20ooaqeV6Spdb6CvNtK6_hKcKVG18uovj8HLYr6a3QfLx7uHWbYMCkpDGjAS-cNYghBbizJZx1SwkpSFRCyOQilkTNZRSFSUJkQSleKSqlgVSAlaEv8dHYObYa8Xfutk6_jOdLb2kpzglOI4JRH21O1AFda0rZWKN1bvhe05RvzHRu5t5L82enY6sEddyf5_kGd5Pkx8A4DAdVc</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Zhou, Jinsheng</creator><creator>Ye, Lin</creator><creator>Lin, Yanming</creator><creator>Wang, Ling</creator><creator>Zhou, Li</creator><creator>Hu, Huiyuan</creator><creator>Zhang, Qilong</creator><creator>Yang, Hui</creator><creator>Luo, Zhongkuan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2283-1772</orcidid></search><sort><creationdate>20190620</creationdate><title>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</title><author>Zhou, Jinsheng ; Ye, Lin ; Lin, Yanming ; Wang, Ling ; Zhou, Li ; Hu, Huiyuan ; Zhang, Qilong ; Yang, Hui ; Luo, Zhongkuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-62501168006bad8b73a6d2dce06754eae72b542f5982e2f91d3f7fc0fa3d28993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH)</topic><topic>Addition polymerization</topic><topic>Ammonium hydroxide</topic><topic>Antifouling</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chain transfer</topic><topic>Electron transfer</topic><topic>Grafting</topic><topic>Gravimetric analysis</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Organic light emitting diodes</topic><topic>photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT)</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>polyvinyl alcohol (PVA)</topic><topic>Thermodynamic properties</topic><topic>Toxicity</topic><topic>Triethylamine</topic><topic>Zwitterions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jinsheng</creatorcontrib><creatorcontrib>Ye, Lin</creatorcontrib><creatorcontrib>Lin, Yanming</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhou, Li</creatorcontrib><creatorcontrib>Hu, Huiyuan</creatorcontrib><creatorcontrib>Zhang, Qilong</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Luo, Zhongkuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jinsheng</au><au>Ye, Lin</au><au>Lin, Yanming</au><au>Wang, Ling</au><au>Zhou, Li</au><au>Hu, Huiyuan</au><au>Zhang, Qilong</au><au>Yang, Hui</au><au>Luo, Zhongkuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property</atitle><jtitle>Journal of applied polymer science</jtitle><date>2019-06-20</date><risdate>2019</risdate><volume>136</volume><issue>24</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT
To improve the antifouling property, polyvinyl alcohol hydrogel was successfully grafted with [2‐(methacryloyloxy) ethyl] dimethyl‐(3‐sulfopropyl) ammonium hydroxide (MEDSAH) via photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET‐RAFT) polymerization under a 10 W blue (450–460 nm) light‐emitting diodes. It is surprising that the reaction could be performed in the presence of oxygen, which meant that the reaction has a great prospect of industrialization. The highest grafting percentage (GP) was 55.77% by adding triethylamine and changed the MEDSAH usage in the absence of oxygen. Thermal gravimetric analysis exhibited that grafted MEDSAH affects the thermal property of PVA hydrogel. Also, there was no influence on the ultraviolet–visible transmittance, and the PVA‐g‐pMEDSAH hydrogel became hydrophilicity after grafting. Moreover, in vitro cytotoxicity of both PVA and PVA‐g‐pMEDSAH hydrogel was noncytotoxic according to ISO 10993‐2009. The antifouling property of PVA‐g‐pMEDSAH hydrogel was increased about 53.05%. Thus, the PVA‐g‐pMEDSAH hydrogel can be an ideal optical biomaterial candidate. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47653.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.47653</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2283-1772</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2019-06, Vol.136 (24), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2193179251 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | [2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl)ammonium hydroxide (MEDSAH) Addition polymerization Ammonium hydroxide Antifouling Biocompatibility Biomedical materials Chain transfer Electron transfer Grafting Gravimetric analysis Hydrogels Materials science Organic light emitting diodes photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization (PET‐RAFT) Polymers Polyvinyl alcohol polyvinyl alcohol (PVA) Thermodynamic properties Toxicity Triethylamine Zwitterions |
title | Surface modification PVA hydrogel with zwitterionic via PET‐RAFT to improve the antifouling property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20modification%20PVA%20hydrogel%20with%20zwitterionic%20via%20PET%E2%80%90RAFT%20to%20improve%20the%20antifouling%20property&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zhou,%20Jinsheng&rft.date=2019-06-20&rft.volume=136&rft.issue=24&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.47653&rft_dat=%3Cproquest_cross%3E2193179251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193179251&rft_id=info:pmid/&rfr_iscdi=true |