Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages
Thermo-mechanical loads induce stresses in photovoltaic (PV) modules, leading to crack formation. In this context, the understanding of module's thermo-mechanical behavior is important. To investigate the thermo-mechanical behavior of smart wire connected technology (SWCT) and busbarPV modules...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-02, Vol.168, p.931-945 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 945 |
---|---|
container_issue | |
container_start_page | 931 |
container_title | Energy (Oxford) |
container_volume | 168 |
creator | Li, Guiqiang Akram, M.W. Jin, Yi Chen, Xiao Zhu, Changan Ahmad, Ashfaq Arshad, R.H. Zhao, Xudong |
description | Thermo-mechanical loads induce stresses in photovoltaic (PV) modules, leading to crack formation. In this context, the understanding of module's thermo-mechanical behavior is important. To investigate the thermo-mechanical behavior of smart wire connected technology (SWCT) and busbarPV modules throughout their entire life, the present study is conducted that probes the stress distribution and deformation during production, transportation, and subsequent mechanical and thermal loading stages in a consecutive step-by-step manner using finite element modellingapproach. Pre-stresses and non-linearitiesare considered in simulation models. Stresses and displacements experienced by different parts/layers are examined, and crack sensitive regions are identified. In addition, the SWCTand busbarmodules are compared, and it is found that SWCTinterconnection is relatively a less stress inducing process and less susceptible to thermal and dynamic affects. During production stage, stresses of 39.3 MPaand 40.4 MPaare generated in SWCTcells and copper wires respectively; while, stresses of 60 MPaand 87 MPaare generated in busbarcells and busbarrespectively. Similarly, lower stresses are induced in SWCTPV modules during subsequent stages. The comparison results show advantages of SWCTmodule in terms of mechanical stability which can lead to improve the performance and reliability of PV modules. |
doi_str_mv | 10.1016/j.energy.2018.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193151063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218323685</els_id><sourcerecordid>2193151063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7f4a64cd65dc6e2198075758b1af5e2557dd4ed08793e5d47b674b89557be0313</originalsourceid><addsrcrecordid>eNp9UcFu1TAQtBBIPAp_wMESVxLsJI6dCxKqoEWqBIfSq-XYm_f8lNgPr1PUT-nf4iicOa1GuzO7O0PIe85qznj_6VxDgHR8qhvGVc2bmrHmBTlwJduql0q8JAfW9qwSXde8Jm8Qz4wxoYbhQJ7vT5CWWC1gTyZ4a2Y6wsk8-pioQQTEBUKmcaK4mJTpH5-A2hgC2AyOmuDouOJo0s8HukS3zoDUrcmHI72kgm32MXykOZmAl5iy2fHGw3VE-L1u8pOH2dE5GrcRMZsj4FvyajIzwrt_9Yr8-vb1_vq2uvtx8_36y11lW8VyJafO9J11vXC2h4YPikkhhRq5mQQ0QkjnOnBMyaEF4To59rIb1VAaI7CWt1fkw65b7i3XYNbnuKZQVuqi1nLBWd-WqW6fsikiJpj0JfniyJPmTG8h6LPeQ9BbCJo3uoRQaJ93GpQPHj0kjdZDsOCKjzZrF_3_Bf4C9FyVyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193151063</pqid></control><display><type>article</type><title>Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Guiqiang ; Akram, M.W. ; Jin, Yi ; Chen, Xiao ; Zhu, Changan ; Ahmad, Ashfaq ; Arshad, R.H. ; Zhao, Xudong</creator><creatorcontrib>Li, Guiqiang ; Akram, M.W. ; Jin, Yi ; Chen, Xiao ; Zhu, Changan ; Ahmad, Ashfaq ; Arshad, R.H. ; Zhao, Xudong</creatorcontrib><description>Thermo-mechanical loads induce stresses in photovoltaic (PV) modules, leading to crack formation. In this context, the understanding of module's thermo-mechanical behavior is important. To investigate the thermo-mechanical behavior of smart wire connected technology (SWCT) and busbarPV modules throughout their entire life, the present study is conducted that probes the stress distribution and deformation during production, transportation, and subsequent mechanical and thermal loading stages in a consecutive step-by-step manner using finite element modellingapproach. Pre-stresses and non-linearitiesare considered in simulation models. Stresses and displacements experienced by different parts/layers are examined, and crack sensitive regions are identified. In addition, the SWCTand busbarmodules are compared, and it is found that SWCTinterconnection is relatively a less stress inducing process and less susceptible to thermal and dynamic affects. During production stage, stresses of 39.3 MPaand 40.4 MPaare generated in SWCTcells and copper wires respectively; while, stresses of 60 MPaand 87 MPaare generated in busbarcells and busbarrespectively. Similarly, lower stresses are induced in SWCTPV modules during subsequent stages. The comparison results show advantages of SWCTmodule in terms of mechanical stability which can lead to improve the performance and reliability of PV modules.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.12.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>BusbarPV modules ; Computer simulation ; Deformation ; Finite element method ; Mathematical models ; Mechanical and thermal loads ; Mechanical properties ; Modules ; Performance enhancement ; Photovoltaic cells ; Photovoltaics ; Production ; Smart wire connected technology (SWCT) PV modules ; Solar cells ; Stress analysis ; Stress concentration ; Stress distribution ; Thermo-mechanical behavior ; Thermomechanical properties ; Transportation ; Wire</subject><ispartof>Energy (Oxford), 2019-02, Vol.168, p.931-945</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7f4a64cd65dc6e2198075758b1af5e2557dd4ed08793e5d47b674b89557be0313</citedby><cites>FETCH-LOGICAL-c380t-7f4a64cd65dc6e2198075758b1af5e2557dd4ed08793e5d47b674b89557be0313</cites><orcidid>0000-0002-7429-6890 ; 0000-0001-8232-3863 ; 0000-0002-6521-7054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Guiqiang</creatorcontrib><creatorcontrib>Akram, M.W.</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Zhu, Changan</creatorcontrib><creatorcontrib>Ahmad, Ashfaq</creatorcontrib><creatorcontrib>Arshad, R.H.</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><title>Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages</title><title>Energy (Oxford)</title><description>Thermo-mechanical loads induce stresses in photovoltaic (PV) modules, leading to crack formation. In this context, the understanding of module's thermo-mechanical behavior is important. To investigate the thermo-mechanical behavior of smart wire connected technology (SWCT) and busbarPV modules throughout their entire life, the present study is conducted that probes the stress distribution and deformation during production, transportation, and subsequent mechanical and thermal loading stages in a consecutive step-by-step manner using finite element modellingapproach. Pre-stresses and non-linearitiesare considered in simulation models. Stresses and displacements experienced by different parts/layers are examined, and crack sensitive regions are identified. In addition, the SWCTand busbarmodules are compared, and it is found that SWCTinterconnection is relatively a less stress inducing process and less susceptible to thermal and dynamic affects. During production stage, stresses of 39.3 MPaand 40.4 MPaare generated in SWCTcells and copper wires respectively; while, stresses of 60 MPaand 87 MPaare generated in busbarcells and busbarrespectively. Similarly, lower stresses are induced in SWCTPV modules during subsequent stages. The comparison results show advantages of SWCTmodule in terms of mechanical stability which can lead to improve the performance and reliability of PV modules.</description><subject>BusbarPV modules</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mechanical and thermal loads</subject><subject>Mechanical properties</subject><subject>Modules</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Production</subject><subject>Smart wire connected technology (SWCT) PV modules</subject><subject>Solar cells</subject><subject>Stress analysis</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Thermo-mechanical behavior</subject><subject>Thermomechanical properties</subject><subject>Transportation</subject><subject>Wire</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1TAQtBBIPAp_wMESVxLsJI6dCxKqoEWqBIfSq-XYm_f8lNgPr1PUT-nf4iicOa1GuzO7O0PIe85qznj_6VxDgHR8qhvGVc2bmrHmBTlwJduql0q8JAfW9qwSXde8Jm8Qz4wxoYbhQJ7vT5CWWC1gTyZ4a2Y6wsk8-pioQQTEBUKmcaK4mJTpH5-A2hgC2AyOmuDouOJo0s8HukS3zoDUrcmHI72kgm32MXykOZmAl5iy2fHGw3VE-L1u8pOH2dE5GrcRMZsj4FvyajIzwrt_9Yr8-vb1_vq2uvtx8_36y11lW8VyJafO9J11vXC2h4YPikkhhRq5mQQ0QkjnOnBMyaEF4To59rIb1VAaI7CWt1fkw65b7i3XYNbnuKZQVuqi1nLBWd-WqW6fsikiJpj0JfniyJPmTG8h6LPeQ9BbCJo3uoRQaJ93GpQPHj0kjdZDsOCKjzZrF_3_Bf4C9FyVyA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Li, Guiqiang</creator><creator>Akram, M.W.</creator><creator>Jin, Yi</creator><creator>Chen, Xiao</creator><creator>Zhu, Changan</creator><creator>Ahmad, Ashfaq</creator><creator>Arshad, R.H.</creator><creator>Zhao, Xudong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7429-6890</orcidid><orcidid>https://orcid.org/0000-0001-8232-3863</orcidid><orcidid>https://orcid.org/0000-0002-6521-7054</orcidid></search><sort><creationdate>20190201</creationdate><title>Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages</title><author>Li, Guiqiang ; Akram, M.W. ; Jin, Yi ; Chen, Xiao ; Zhu, Changan ; Ahmad, Ashfaq ; Arshad, R.H. ; Zhao, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7f4a64cd65dc6e2198075758b1af5e2557dd4ed08793e5d47b674b89557be0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BusbarPV modules</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mechanical and thermal loads</topic><topic>Mechanical properties</topic><topic>Modules</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Production</topic><topic>Smart wire connected technology (SWCT) PV modules</topic><topic>Solar cells</topic><topic>Stress analysis</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Thermo-mechanical behavior</topic><topic>Thermomechanical properties</topic><topic>Transportation</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guiqiang</creatorcontrib><creatorcontrib>Akram, M.W.</creatorcontrib><creatorcontrib>Jin, Yi</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Zhu, Changan</creatorcontrib><creatorcontrib>Ahmad, Ashfaq</creatorcontrib><creatorcontrib>Arshad, R.H.</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Guiqiang</au><au>Akram, M.W.</au><au>Jin, Yi</au><au>Chen, Xiao</au><au>Zhu, Changan</au><au>Ahmad, Ashfaq</au><au>Arshad, R.H.</au><au>Zhao, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>168</volume><spage>931</spage><epage>945</epage><pages>931-945</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Thermo-mechanical loads induce stresses in photovoltaic (PV) modules, leading to crack formation. In this context, the understanding of module's thermo-mechanical behavior is important. To investigate the thermo-mechanical behavior of smart wire connected technology (SWCT) and busbarPV modules throughout their entire life, the present study is conducted that probes the stress distribution and deformation during production, transportation, and subsequent mechanical and thermal loading stages in a consecutive step-by-step manner using finite element modellingapproach. Pre-stresses and non-linearitiesare considered in simulation models. Stresses and displacements experienced by different parts/layers are examined, and crack sensitive regions are identified. In addition, the SWCTand busbarmodules are compared, and it is found that SWCTinterconnection is relatively a less stress inducing process and less susceptible to thermal and dynamic affects. During production stage, stresses of 39.3 MPaand 40.4 MPaare generated in SWCTcells and copper wires respectively; while, stresses of 60 MPaand 87 MPaare generated in busbarcells and busbarrespectively. Similarly, lower stresses are induced in SWCTPV modules during subsequent stages. The comparison results show advantages of SWCTmodule in terms of mechanical stability which can lead to improve the performance and reliability of PV modules.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.12.002</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7429-6890</orcidid><orcidid>https://orcid.org/0000-0001-8232-3863</orcidid><orcidid>https://orcid.org/0000-0002-6521-7054</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-02, Vol.168, p.931-945 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2193151063 |
source | Access via ScienceDirect (Elsevier) |
subjects | BusbarPV modules Computer simulation Deformation Finite element method Mathematical models Mechanical and thermal loads Mechanical properties Modules Performance enhancement Photovoltaic cells Photovoltaics Production Smart wire connected technology (SWCT) PV modules Solar cells Stress analysis Stress concentration Stress distribution Thermo-mechanical behavior Thermomechanical properties Transportation Wire |
title | Thermo-mechanical behavior assessment of smart wire connected and busbarPV modules during production, transportation, and subsequent field loading stages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20behavior%20assessment%20of%20smart%20wire%20connected%20and%20busbarPV%20modules%20during%20production,%20transportation,%20and%20subsequent%20field%20loading%20stages&rft.jtitle=Energy%20(Oxford)&rft.au=Li,%20Guiqiang&rft.date=2019-02-01&rft.volume=168&rft.spage=931&rft.epage=945&rft.pages=931-945&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.12.002&rft_dat=%3Cproquest_cross%3E2193151063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193151063&rft_id=info:pmid/&rft_els_id=S0360544218323685&rfr_iscdi=true |