Reliable home error identification of a 2-DOF parallel robot based on regularization methods

This paper deals with the home error (the initial position error of active link) identification of a 2-DOF parallel robot. The identification model containing the home errors of the robot and the assembly errors of a new measuring instrument is developed using distance measurement. After that, an ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2019-04, Vol.233 (7), p.2502-2515
Hauptverfasser: Mei, Jiangping, Zang, Jiawei, Ding, Yabin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2515
container_issue 7
container_start_page 2502
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 233
creator Mei, Jiangping
Zang, Jiawei
Ding, Yabin
description This paper deals with the home error (the initial position error of active link) identification of a 2-DOF parallel robot. The identification model containing the home errors of the robot and the assembly errors of a new measuring instrument is developed using distance measurement. After that, an adaptive ridge regression method and a regularized Kalman filter method are proposed to improve the identification reliability and accuracy. Particularly, a modified L-curve method is proposed to provide suitable regularization parameters for the regularized Kalman filter. Based on the selected optimal measurement positions, experiments are carried out, in which the two regularized identification methods are compared with the ordinary ridge regression and the Kalman filter methods. Results show that the reliability and accuracy of the two methods are much better than the ordinary ridge regression method, and the divergence problem of the Kalman filter can be well resolved by the regularized Kalman filter.
doi_str_mv 10.1177/0954406218791635
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193124980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406218791635</sage_id><sourcerecordid>2193124980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-919a7263ddf66f5421a053c5f4a3dcbc64ac17dbb094861515251d6e44e52c2e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEUxIMoWKt3jwHPq3n52s1RqlVBKIjehCWbvLRbtk1Ntgf9692ygiD4LnOY38yDIeQS2DVAWd4wo6RkmkNVGtBCHZEJZxIKbipxTCYHuzj4p-Qs5zUbjms1Ie8v2LW26ZCu4gYpphQTbT1u-za0zvZt3NIYqKW8uFvM6c4m23XY0RSb2NPGZvR0QBIu951N7deY2GC_ij6fk5Ngu4wXPzolb_P719lj8bx4eJrdPhdOMNMXBowtuRbeB62DkhwsU8KpIK3wrnFaWgelbxpmZKVBgeIKvEYpUXHHUUzJ1di7S_Fjj7mv13GftsPLmoMRwKWp2ECxkXIp5pww1LvUbmz6rIHVhw3rvxsOkWKMZLvE39J_-W_62XAi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193124980</pqid></control><display><type>article</type><title>Reliable home error identification of a 2-DOF parallel robot based on regularization methods</title><source>SAGE Complete</source><creator>Mei, Jiangping ; Zang, Jiawei ; Ding, Yabin</creator><creatorcontrib>Mei, Jiangping ; Zang, Jiawei ; Ding, Yabin</creatorcontrib><description>This paper deals with the home error (the initial position error of active link) identification of a 2-DOF parallel robot. The identification model containing the home errors of the robot and the assembly errors of a new measuring instrument is developed using distance measurement. After that, an adaptive ridge regression method and a regularized Kalman filter method are proposed to improve the identification reliability and accuracy. Particularly, a modified L-curve method is proposed to provide suitable regularization parameters for the regularized Kalman filter. Based on the selected optimal measurement positions, experiments are carried out, in which the two regularized identification methods are compared with the ordinary ridge regression and the Kalman filter methods. Results show that the reliability and accuracy of the two methods are much better than the ordinary ridge regression method, and the divergence problem of the Kalman filter can be well resolved by the regularized Kalman filter.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406218791635</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive filters ; Distance measurement ; Divergence ; Identification ; Identification methods ; Kalman filters ; Measuring instruments ; Parallel degrees of freedom ; Parameter modification ; Position errors ; Regression ; Regularization ; Regularization methods ; Reliability ; Robots</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2019-04, Vol.233 (7), p.2502-2515</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-919a7263ddf66f5421a053c5f4a3dcbc64ac17dbb094861515251d6e44e52c2e3</citedby><cites>FETCH-LOGICAL-c309t-919a7263ddf66f5421a053c5f4a3dcbc64ac17dbb094861515251d6e44e52c2e3</cites><orcidid>0000-0002-4247-1068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406218791635$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406218791635$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Mei, Jiangping</creatorcontrib><creatorcontrib>Zang, Jiawei</creatorcontrib><creatorcontrib>Ding, Yabin</creatorcontrib><title>Reliable home error identification of a 2-DOF parallel robot based on regularization methods</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>This paper deals with the home error (the initial position error of active link) identification of a 2-DOF parallel robot. The identification model containing the home errors of the robot and the assembly errors of a new measuring instrument is developed using distance measurement. After that, an adaptive ridge regression method and a regularized Kalman filter method are proposed to improve the identification reliability and accuracy. Particularly, a modified L-curve method is proposed to provide suitable regularization parameters for the regularized Kalman filter. Based on the selected optimal measurement positions, experiments are carried out, in which the two regularized identification methods are compared with the ordinary ridge regression and the Kalman filter methods. Results show that the reliability and accuracy of the two methods are much better than the ordinary ridge regression method, and the divergence problem of the Kalman filter can be well resolved by the regularized Kalman filter.</description><subject>Adaptive filters</subject><subject>Distance measurement</subject><subject>Divergence</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Kalman filters</subject><subject>Measuring instruments</subject><subject>Parallel degrees of freedom</subject><subject>Parameter modification</subject><subject>Position errors</subject><subject>Regression</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Reliability</subject><subject>Robots</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEUxIMoWKt3jwHPq3n52s1RqlVBKIjehCWbvLRbtk1Ntgf9692ygiD4LnOY38yDIeQS2DVAWd4wo6RkmkNVGtBCHZEJZxIKbipxTCYHuzj4p-Qs5zUbjms1Ie8v2LW26ZCu4gYpphQTbT1u-za0zvZt3NIYqKW8uFvM6c4m23XY0RSb2NPGZvR0QBIu951N7deY2GC_ij6fk5Ngu4wXPzolb_P719lj8bx4eJrdPhdOMNMXBowtuRbeB62DkhwsU8KpIK3wrnFaWgelbxpmZKVBgeIKvEYpUXHHUUzJ1di7S_Fjj7mv13GftsPLmoMRwKWp2ECxkXIp5pww1LvUbmz6rIHVhw3rvxsOkWKMZLvE39J_-W_62XAi</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Mei, Jiangping</creator><creator>Zang, Jiawei</creator><creator>Ding, Yabin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-4247-1068</orcidid></search><sort><creationdate>201904</creationdate><title>Reliable home error identification of a 2-DOF parallel robot based on regularization methods</title><author>Mei, Jiangping ; Zang, Jiawei ; Ding, Yabin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-919a7263ddf66f5421a053c5f4a3dcbc64ac17dbb094861515251d6e44e52c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive filters</topic><topic>Distance measurement</topic><topic>Divergence</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Kalman filters</topic><topic>Measuring instruments</topic><topic>Parallel degrees of freedom</topic><topic>Parameter modification</topic><topic>Position errors</topic><topic>Regression</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Reliability</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Jiangping</creatorcontrib><creatorcontrib>Zang, Jiawei</creatorcontrib><creatorcontrib>Ding, Yabin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Jiangping</au><au>Zang, Jiawei</au><au>Ding, Yabin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable home error identification of a 2-DOF parallel robot based on regularization methods</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2019-04</date><risdate>2019</risdate><volume>233</volume><issue>7</issue><spage>2502</spage><epage>2515</epage><pages>2502-2515</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>This paper deals with the home error (the initial position error of active link) identification of a 2-DOF parallel robot. The identification model containing the home errors of the robot and the assembly errors of a new measuring instrument is developed using distance measurement. After that, an adaptive ridge regression method and a regularized Kalman filter method are proposed to improve the identification reliability and accuracy. Particularly, a modified L-curve method is proposed to provide suitable regularization parameters for the regularized Kalman filter. Based on the selected optimal measurement positions, experiments are carried out, in which the two regularized identification methods are compared with the ordinary ridge regression and the Kalman filter methods. Results show that the reliability and accuracy of the two methods are much better than the ordinary ridge regression method, and the divergence problem of the Kalman filter can be well resolved by the regularized Kalman filter.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406218791635</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4247-1068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2019-04, Vol.233 (7), p.2502-2515
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2193124980
source SAGE Complete
subjects Adaptive filters
Distance measurement
Divergence
Identification
Identification methods
Kalman filters
Measuring instruments
Parallel degrees of freedom
Parameter modification
Position errors
Regression
Regularization
Regularization methods
Reliability
Robots
title Reliable home error identification of a 2-DOF parallel robot based on regularization methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20home%20error%20identification%20of%20a%202-DOF%20parallel%20robot%20based%20on%20regularization%20methods&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Mei,%20Jiangping&rft.date=2019-04&rft.volume=233&rft.issue=7&rft.spage=2502&rft.epage=2515&rft.pages=2502-2515&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406218791635&rft_dat=%3Cproquest_cross%3E2193124980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193124980&rft_id=info:pmid/&rft_sage_id=10.1177_0954406218791635&rfr_iscdi=true