Aristotelian Syntax from a Computational–Combinatorial Point of View

This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2005-12, Vol.15 (6), p.949-973
1. Verfasser: Glashoff, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 973
container_issue 6
container_start_page 949
container_title Journal of logic and computation
container_volume 15
creator Glashoff, Klaus
description This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.
doi_str_mv 10.1093/logcom/exi048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219198180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>944384211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-ae4c2c618dadaaeff24322763181006fb2d28db68cc7b468320fedc2d5d39a953</originalsourceid><addsrcrecordid>eNpFkN1KwzAAhYMoOKeX3hfv6_LTpunlqM6qAwV_GLsJaZpIZtvMJMPtznfwDX0SKxW9Ohz4OBw-AE4RPEcwJ5PGvkjbTtTWwITtgRFKaBoTShb7YATzNI2zHC8OwZH3KwghpigZgdnUGR9sUI0RXfSw64LYRtrZNhJRYdv1JohgbCear4_PvlemE8E6I5ro3pouRFZHz0a9H4MDLRqvTn5zDJ5ml49FGc_vrq6L6TyWBOIQC5VILClitaiFUFrjhGCcUYIYgpDqCteY1RVlUmZVQhnBUKta4jqtSS7ylIzB2bC7dvZto3zgK7tx_T3PMcpRzhCDPRQPkHTWe6c0XzvTCrfjCPIfU3wwxQdT_3xvQm3_YOFeOc1IlvJyseTl8haXNxeUF-QbTq5vYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219198180</pqid></control><display><type>article</type><title>Aristotelian Syntax from a Computational–Combinatorial Point of View</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Glashoff, Klaus</creator><creatorcontrib>Glashoff, Klaus</creatorcontrib><description>This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exi048</identifier><identifier>CODEN: JLCOEU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Aristotelian logic ; syllogistic</subject><ispartof>Journal of logic and computation, 2005-12, Vol.15 (6), p.949-973</ispartof><rights>Copyright Oxford University Press(England) Dec 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-ae4c2c618dadaaeff24322763181006fb2d28db68cc7b468320fedc2d5d39a953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Glashoff, Klaus</creatorcontrib><title>Aristotelian Syntax from a Computational–Combinatorial Point of View</title><title>Journal of logic and computation</title><addtitle>J Logic Computation</addtitle><description>This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.</description><subject>Aristotelian logic</subject><subject>syllogistic</subject><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkN1KwzAAhYMoOKeX3hfv6_LTpunlqM6qAwV_GLsJaZpIZtvMJMPtznfwDX0SKxW9Ohz4OBw-AE4RPEcwJ5PGvkjbTtTWwITtgRFKaBoTShb7YATzNI2zHC8OwZH3KwghpigZgdnUGR9sUI0RXfSw64LYRtrZNhJRYdv1JohgbCear4_PvlemE8E6I5ro3pouRFZHz0a9H4MDLRqvTn5zDJ5ml49FGc_vrq6L6TyWBOIQC5VILClitaiFUFrjhGCcUYIYgpDqCteY1RVlUmZVQhnBUKta4jqtSS7ylIzB2bC7dvZto3zgK7tx_T3PMcpRzhCDPRQPkHTWe6c0XzvTCrfjCPIfU3wwxQdT_3xvQm3_YOFeOc1IlvJyseTl8haXNxeUF-QbTq5vYw</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Glashoff, Klaus</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200512</creationdate><title>Aristotelian Syntax from a Computational–Combinatorial Point of View</title><author>Glashoff, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-ae4c2c618dadaaeff24322763181006fb2d28db68cc7b468320fedc2d5d39a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aristotelian logic</topic><topic>syllogistic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glashoff, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glashoff, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aristotelian Syntax from a Computational–Combinatorial Point of View</atitle><jtitle>Journal of logic and computation</jtitle><addtitle>J Logic Computation</addtitle><date>2005-12</date><risdate>2005</risdate><volume>15</volume><issue>6</issue><spage>949</spage><epage>973</epage><pages>949-973</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><coden>JLCOEU</coden><abstract>This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/logcom/exi048</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2005-12, Vol.15 (6), p.949-973
issn 0955-792X
1465-363X
language eng
recordid cdi_proquest_journals_219198180
source Oxford University Press Journals All Titles (1996-Current)
subjects Aristotelian logic
syllogistic
title Aristotelian Syntax from a Computational–Combinatorial Point of View
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aristotelian%20Syntax%20from%20a%20Computational%E2%80%93Combinatorial%20Point%20of%20View&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Glashoff,%20Klaus&rft.date=2005-12&rft.volume=15&rft.issue=6&rft.spage=949&rft.epage=973&rft.pages=949-973&rft.issn=0955-792X&rft.eissn=1465-363X&rft.coden=JLCOEU&rft_id=info:doi/10.1093/logcom/exi048&rft_dat=%3Cproquest_cross%3E944384211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219198180&rft_id=info:pmid/&rfr_iscdi=true