Aristotelian Syntax from a Computational–Combinatorial Point of View
This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the the...
Gespeichert in:
Veröffentlicht in: | Journal of logic and computation 2005-12, Vol.15 (6), p.949-973 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 973 |
---|---|
container_issue | 6 |
container_start_page | 949 |
container_title | Journal of logic and computation |
container_volume | 15 |
creator | Glashoff, Klaus |
description | This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts. |
doi_str_mv | 10.1093/logcom/exi048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219198180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>944384211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-ae4c2c618dadaaeff24322763181006fb2d28db68cc7b468320fedc2d5d39a953</originalsourceid><addsrcrecordid>eNpFkN1KwzAAhYMoOKeX3hfv6_LTpunlqM6qAwV_GLsJaZpIZtvMJMPtznfwDX0SKxW9Ohz4OBw-AE4RPEcwJ5PGvkjbTtTWwITtgRFKaBoTShb7YATzNI2zHC8OwZH3KwghpigZgdnUGR9sUI0RXfSw64LYRtrZNhJRYdv1JohgbCear4_PvlemE8E6I5ro3pouRFZHz0a9H4MDLRqvTn5zDJ5ml49FGc_vrq6L6TyWBOIQC5VILClitaiFUFrjhGCcUYIYgpDqCteY1RVlUmZVQhnBUKta4jqtSS7ylIzB2bC7dvZto3zgK7tx_T3PMcpRzhCDPRQPkHTWe6c0XzvTCrfjCPIfU3wwxQdT_3xvQm3_YOFeOc1IlvJyseTl8haXNxeUF-QbTq5vYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219198180</pqid></control><display><type>article</type><title>Aristotelian Syntax from a Computational–Combinatorial Point of View</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Glashoff, Klaus</creator><creatorcontrib>Glashoff, Klaus</creatorcontrib><description>This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exi048</identifier><identifier>CODEN: JLCOEU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Aristotelian logic ; syllogistic</subject><ispartof>Journal of logic and computation, 2005-12, Vol.15 (6), p.949-973</ispartof><rights>Copyright Oxford University Press(England) Dec 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-ae4c2c618dadaaeff24322763181006fb2d28db68cc7b468320fedc2d5d39a953</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Glashoff, Klaus</creatorcontrib><title>Aristotelian Syntax from a Computational–Combinatorial Point of View</title><title>Journal of logic and computation</title><addtitle>J Logic Computation</addtitle><description>This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.</description><subject>Aristotelian logic</subject><subject>syllogistic</subject><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkN1KwzAAhYMoOKeX3hfv6_LTpunlqM6qAwV_GLsJaZpIZtvMJMPtznfwDX0SKxW9Ohz4OBw-AE4RPEcwJ5PGvkjbTtTWwITtgRFKaBoTShb7YATzNI2zHC8OwZH3KwghpigZgdnUGR9sUI0RXfSw64LYRtrZNhJRYdv1JohgbCear4_PvlemE8E6I5ro3pouRFZHz0a9H4MDLRqvTn5zDJ5ml49FGc_vrq6L6TyWBOIQC5VILClitaiFUFrjhGCcUYIYgpDqCteY1RVlUmZVQhnBUKta4jqtSS7ylIzB2bC7dvZto3zgK7tx_T3PMcpRzhCDPRQPkHTWe6c0XzvTCrfjCPIfU3wwxQdT_3xvQm3_YOFeOc1IlvJyseTl8haXNxeUF-QbTq5vYw</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Glashoff, Klaus</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200512</creationdate><title>Aristotelian Syntax from a Computational–Combinatorial Point of View</title><author>Glashoff, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-ae4c2c618dadaaeff24322763181006fb2d28db68cc7b468320fedc2d5d39a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aristotelian logic</topic><topic>syllogistic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glashoff, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glashoff, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aristotelian Syntax from a Computational–Combinatorial Point of View</atitle><jtitle>Journal of logic and computation</jtitle><addtitle>J Logic Computation</addtitle><date>2005-12</date><risdate>2005</risdate><volume>15</volume><issue>6</issue><spage>949</spage><epage>973</epage><pages>949-973</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><coden>JLCOEU</coden><abstract>This paper translates Aristotelian logic into the sphere of computational–combinatorical research methods. The task is accomplished by formalizing Aristotle's logical system in terms of rule-based reduction relations on a suitable basic set, which allows us to apply standard concepts of the theory of such structures (Newman lemma) to the ancient logical system. In this way we are able to reproduce Aristotle's method of deriving syllogisms within a precisely defined formal environment, and we can analyse the structure of the set of syllogistic rules by means of a computer program. Thus we show that Aristotle's syllogistic logic is a formal system of its own, which can be modelled independently of predicate logic and set theory. Our research is very much in the spirit of Smiley's and Corcoran's modelling of Aristotelian logic as a deductional system, and we aim to stay close to Aristotle's own term – logical concepts.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/logcom/exi048</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-792X |
ispartof | Journal of logic and computation, 2005-12, Vol.15 (6), p.949-973 |
issn | 0955-792X 1465-363X |
language | eng |
recordid | cdi_proquest_journals_219198180 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Aristotelian logic syllogistic |
title | Aristotelian Syntax from a Computational–Combinatorial Point of View |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aristotelian%20Syntax%20from%20a%20Computational%E2%80%93Combinatorial%20Point%20of%20View&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Glashoff,%20Klaus&rft.date=2005-12&rft.volume=15&rft.issue=6&rft.spage=949&rft.epage=973&rft.pages=949-973&rft.issn=0955-792X&rft.eissn=1465-363X&rft.coden=JLCOEU&rft_id=info:doi/10.1093/logcom/exi048&rft_dat=%3Cproquest_cross%3E944384211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219198180&rft_id=info:pmid/&rfr_iscdi=true |