A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium
Using nine model simulations from the PMIP3, we study simulated mean Indian summer (June–September) climate and its variability during the Last Millennium (LM; CE0850-1849) with emphasis on the Medieval Warm Period (MWP; CE1000-1199) and Little Ice Age (LIA; CE1550-1749), after validation of the sim...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2019-09, Vol.53 (5-6), p.3445-3461 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3461 |
---|---|
container_issue | 5-6 |
container_start_page | 3445 |
container_title | Climate dynamics |
container_volume | 53 |
creator | Tejavath, Charan Teja Ashok, Karumuri Chakraborty, Supriyo Ramesh, Rengaswamy |
description | Using nine model simulations from the PMIP3, we study simulated mean Indian summer (June–September) climate and its variability during the Last Millennium (LM; CE0850-1849) with emphasis on the Medieval Warm Period (MWP; CE1000-1199) and Little Ice Age (LIA; CE1550-1749), after validation of the simulated ‘current day (CE1850-2005)’ climate and trends. We find that the simulated above (below) mean-LM summer temperatures during the MWP (LIA) are associated with relatively higher (lower) moisture, and relatively higher (lower) number of concurrent El Niños (La Niñas). Importantly, the models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA) compared to the LM-mean, notwithstanding a strong simulated negative correlation between NINO3.4 index and the area-averaged ISMR. Interestingly, the percentage of the simulated strong El Niños (La Niñas) associated with negative (positive) ISMR anomalies is higher (lower) in the LIA (MWP). This nonlinearity is explained by the simulated background climate changes, as follows. Distribution of simulated anomalous 850 hPa boreal summer velocity potential during MWP in models indicates, relative to the mean LM conditions, a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, i.e. a westward shift in the Walker circulation. The anomalous divergence centre in the west during the MWP also extends into the equatorial eastern Indian Ocean, triggering in an anomalous convergence zone over India and relatively higher moisture transport therein and therefore excess rainfall during the MWP as compared to the LM-mean, and hence an apparent weakening in the El Niño impact. |
doi_str_mv | 10.1007/s00382-019-04718-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2191940713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597416566</galeid><sourcerecordid>A597416566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6e600cc1d19aecb7beb78c9425b90e38be86ef69bc7742abac463806d2bd4d073</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVpodu0L5CToFDowalkyZJ1XELSLmyakDRnIcvjXae2lEpyaXLLm0e7LrR7CToIDd-nYeZH6JiSE0qI_BIJYXVZEKoKwiWti8dXaEE5y6Va8ddoQRQjhaxk9Ra9i_GOEMqFLBfoaYmvLlZXDDsTgkn9b8C-w6NvpyG_vNu9zr7fXOIEA1jvHNhdOeLkcdoCXrm2Nw7HaRwhZM9Fn6XmATfG_twEP7kW261xG4i4d3tlbWLCF_0wgHP9NL5HbzozRPjw9z5Ct-dnP06_FevLr6vT5bqwvGSpECAIsZa2VBmwjWygkbVVvKwaRYDVDdQCOqEaKyUvTW7PBauJaMum5S2R7Ah9nP-9D_7XBDHpOz8Fl1vqkiqqOJGUZepkpjZmAN27zqdgbD4tjH2eH7o-15eVkpyKSogsfD4QMpPgT9qYKUa9urk-ZD_9x27BDGkb_TDtN3oIljNog48xQKfvQz-a8KAp0bvA9Ry4zoHrfeD6MUtslmKG88LDvwFfsJ4BgTGuHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191940713</pqid></control><display><type>article</type><title>A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tejavath, Charan Teja ; Ashok, Karumuri ; Chakraborty, Supriyo ; Ramesh, Rengaswamy</creator><creatorcontrib>Tejavath, Charan Teja ; Ashok, Karumuri ; Chakraborty, Supriyo ; Ramesh, Rengaswamy</creatorcontrib><description>Using nine model simulations from the PMIP3, we study simulated mean Indian summer (June–September) climate and its variability during the Last Millennium (LM; CE0850-1849) with emphasis on the Medieval Warm Period (MWP; CE1000-1199) and Little Ice Age (LIA; CE1550-1749), after validation of the simulated ‘current day (CE1850-2005)’ climate and trends. We find that the simulated above (below) mean-LM summer temperatures during the MWP (LIA) are associated with relatively higher (lower) moisture, and relatively higher (lower) number of concurrent El Niños (La Niñas). Importantly, the models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA) compared to the LM-mean, notwithstanding a strong simulated negative correlation between NINO3.4 index and the area-averaged ISMR. Interestingly, the percentage of the simulated strong El Niños (La Niñas) associated with negative (positive) ISMR anomalies is higher (lower) in the LIA (MWP). This nonlinearity is explained by the simulated background climate changes, as follows. Distribution of simulated anomalous 850 hPa boreal summer velocity potential during MWP in models indicates, relative to the mean LM conditions, a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, i.e. a westward shift in the Walker circulation. The anomalous divergence centre in the west during the MWP also extends into the equatorial eastern Indian Ocean, triggering in an anomalous convergence zone over India and relatively higher moisture transport therein and therefore excess rainfall during the MWP as compared to the LM-mean, and hence an apparent weakening in the El Niño impact.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-019-04718-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>20th century ; Analysis ; Anomalies ; Atmospheric circulation ; Climate ; Climate change ; Climate variability ; Climatology ; Computer simulation ; Convergence ; Convergence zones ; Divergence ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Excess rainfall ; Extreme weather ; Geophysics/Geodesy ; Ice ages ; Little Ice Age ; Moisture ; Monsoon rainfall ; Monsoons ; Nonlinear systems ; Nonlinearity ; Oceanography ; Rain ; Rain and rainfall ; Rainfall ; Southern Oscillation ; Summer ; Summer monsoon ; Summer temperatures ; Tropical climate ; Velocity potential ; Walker circulation ; Wind</subject><ispartof>Climate dynamics, 2019-09, Vol.53 (5-6), p.3445-3461</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6e600cc1d19aecb7beb78c9425b90e38be86ef69bc7742abac463806d2bd4d073</citedby><cites>FETCH-LOGICAL-c423t-6e600cc1d19aecb7beb78c9425b90e38be86ef69bc7742abac463806d2bd4d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-019-04718-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-019-04718-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tejavath, Charan Teja</creatorcontrib><creatorcontrib>Ashok, Karumuri</creatorcontrib><creatorcontrib>Chakraborty, Supriyo</creatorcontrib><creatorcontrib>Ramesh, Rengaswamy</creatorcontrib><title>A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Using nine model simulations from the PMIP3, we study simulated mean Indian summer (June–September) climate and its variability during the Last Millennium (LM; CE0850-1849) with emphasis on the Medieval Warm Period (MWP; CE1000-1199) and Little Ice Age (LIA; CE1550-1749), after validation of the simulated ‘current day (CE1850-2005)’ climate and trends. We find that the simulated above (below) mean-LM summer temperatures during the MWP (LIA) are associated with relatively higher (lower) moisture, and relatively higher (lower) number of concurrent El Niños (La Niñas). Importantly, the models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA) compared to the LM-mean, notwithstanding a strong simulated negative correlation between NINO3.4 index and the area-averaged ISMR. Interestingly, the percentage of the simulated strong El Niños (La Niñas) associated with negative (positive) ISMR anomalies is higher (lower) in the LIA (MWP). This nonlinearity is explained by the simulated background climate changes, as follows. Distribution of simulated anomalous 850 hPa boreal summer velocity potential during MWP in models indicates, relative to the mean LM conditions, a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, i.e. a westward shift in the Walker circulation. The anomalous divergence centre in the west during the MWP also extends into the equatorial eastern Indian Ocean, triggering in an anomalous convergence zone over India and relatively higher moisture transport therein and therefore excess rainfall during the MWP as compared to the LM-mean, and hence an apparent weakening in the El Niño impact.</description><subject>20th century</subject><subject>Analysis</subject><subject>Anomalies</subject><subject>Atmospheric circulation</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate variability</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Convergence zones</subject><subject>Divergence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Excess rainfall</subject><subject>Extreme weather</subject><subject>Geophysics/Geodesy</subject><subject>Ice ages</subject><subject>Little Ice Age</subject><subject>Moisture</subject><subject>Monsoon rainfall</subject><subject>Monsoons</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Oceanography</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Rainfall</subject><subject>Southern Oscillation</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Summer temperatures</subject><subject>Tropical climate</subject><subject>Velocity potential</subject><subject>Walker circulation</subject><subject>Wind</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFq3DAQhkVpodu0L5CToFDowalkyZJ1XELSLmyakDRnIcvjXae2lEpyaXLLm0e7LrR7CToIDd-nYeZH6JiSE0qI_BIJYXVZEKoKwiWti8dXaEE5y6Va8ddoQRQjhaxk9Ra9i_GOEMqFLBfoaYmvLlZXDDsTgkn9b8C-w6NvpyG_vNu9zr7fXOIEA1jvHNhdOeLkcdoCXrm2Nw7HaRwhZM9Fn6XmATfG_twEP7kW261xG4i4d3tlbWLCF_0wgHP9NL5HbzozRPjw9z5Ct-dnP06_FevLr6vT5bqwvGSpECAIsZa2VBmwjWygkbVVvKwaRYDVDdQCOqEaKyUvTW7PBauJaMum5S2R7Ah9nP-9D_7XBDHpOz8Fl1vqkiqqOJGUZepkpjZmAN27zqdgbD4tjH2eH7o-15eVkpyKSogsfD4QMpPgT9qYKUa9urk-ZD_9x27BDGkb_TDtN3oIljNog48xQKfvQz-a8KAp0bvA9Ry4zoHrfeD6MUtslmKG88LDvwFfsJ4BgTGuHw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Tejavath, Charan Teja</creator><creator>Ashok, Karumuri</creator><creator>Chakraborty, Supriyo</creator><creator>Ramesh, Rengaswamy</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190901</creationdate><title>A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium</title><author>Tejavath, Charan Teja ; Ashok, Karumuri ; Chakraborty, Supriyo ; Ramesh, Rengaswamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6e600cc1d19aecb7beb78c9425b90e38be86ef69bc7742abac463806d2bd4d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>20th century</topic><topic>Analysis</topic><topic>Anomalies</topic><topic>Atmospheric circulation</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate variability</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Convergence zones</topic><topic>Divergence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Excess rainfall</topic><topic>Extreme weather</topic><topic>Geophysics/Geodesy</topic><topic>Ice ages</topic><topic>Little Ice Age</topic><topic>Moisture</topic><topic>Monsoon rainfall</topic><topic>Monsoons</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Oceanography</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Rainfall</topic><topic>Southern Oscillation</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Summer temperatures</topic><topic>Tropical climate</topic><topic>Velocity potential</topic><topic>Walker circulation</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tejavath, Charan Teja</creatorcontrib><creatorcontrib>Ashok, Karumuri</creatorcontrib><creatorcontrib>Chakraborty, Supriyo</creatorcontrib><creatorcontrib>Ramesh, Rengaswamy</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tejavath, Charan Teja</au><au>Ashok, Karumuri</au><au>Chakraborty, Supriyo</au><au>Ramesh, Rengaswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>53</volume><issue>5-6</issue><spage>3445</spage><epage>3461</epage><pages>3445-3461</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Using nine model simulations from the PMIP3, we study simulated mean Indian summer (June–September) climate and its variability during the Last Millennium (LM; CE0850-1849) with emphasis on the Medieval Warm Period (MWP; CE1000-1199) and Little Ice Age (LIA; CE1550-1749), after validation of the simulated ‘current day (CE1850-2005)’ climate and trends. We find that the simulated above (below) mean-LM summer temperatures during the MWP (LIA) are associated with relatively higher (lower) moisture, and relatively higher (lower) number of concurrent El Niños (La Niñas). Importantly, the models simulate higher (lower) Indian summer monsoon rainfall (ISMR) during the MWP (LIA) compared to the LM-mean, notwithstanding a strong simulated negative correlation between NINO3.4 index and the area-averaged ISMR. Interestingly, the percentage of the simulated strong El Niños (La Niñas) associated with negative (positive) ISMR anomalies is higher (lower) in the LIA (MWP). This nonlinearity is explained by the simulated background climate changes, as follows. Distribution of simulated anomalous 850 hPa boreal summer velocity potential during MWP in models indicates, relative to the mean LM conditions, a zone of anomalous convergence in the central tropical Pacific flanked by two zones of divergence, i.e. a westward shift in the Walker circulation. The anomalous divergence centre in the west during the MWP also extends into the equatorial eastern Indian Ocean, triggering in an anomalous convergence zone over India and relatively higher moisture transport therein and therefore excess rainfall during the MWP as compared to the LM-mean, and hence an apparent weakening in the El Niño impact.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-019-04718-z</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2019-09, Vol.53 (5-6), p.3445-3461 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2191940713 |
source | SpringerLink Journals - AutoHoldings |
subjects | 20th century Analysis Anomalies Atmospheric circulation Climate Climate change Climate variability Climatology Computer simulation Convergence Convergence zones Divergence Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Excess rainfall Extreme weather Geophysics/Geodesy Ice ages Little Ice Age Moisture Monsoon rainfall Monsoons Nonlinear systems Nonlinearity Oceanography Rain Rain and rainfall Rainfall Southern Oscillation Summer Summer monsoon Summer temperatures Tropical climate Velocity potential Walker circulation Wind |
title | A PMIP3 narrative of modulation of ENSO teleconnections to the Indian summer monsoon by background changes in the Last Millennium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PMIP3%20narrative%20of%20modulation%20of%20ENSO%20teleconnections%20to%20the%20Indian%20summer%20monsoon%20by%20background%20changes%20in%20the%20Last%20Millennium&rft.jtitle=Climate%20dynamics&rft.au=Tejavath,%20Charan%20Teja&rft.date=2019-09-01&rft.volume=53&rft.issue=5-6&rft.spage=3445&rft.epage=3461&rft.pages=3445-3461&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-019-04718-z&rft_dat=%3Cgale_proqu%3EA597416566%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191940713&rft_id=info:pmid/&rft_galeid=A597416566&rfr_iscdi=true |