Stimulated Low-Frequency Raman Scattering in Albumin

Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum alb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Russian laser research 2019-01, Vol.40 (1), p.71-75
Hauptverfasser: Shevchenko, M. A., Chaikov, L. L., Kirichenko, M. N., Kudryavtseva, A. D., Mironova, T. V., Savichev, V. I., Sokovishin, V. V., Tcherniega, N. V., Zemskov, K. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 71
container_title Journal of Russian laser research
container_volume 40
creator Shevchenko, M. A.
Chaikov, L. L.
Kirichenko, M. N.
Kudryavtseva, A. D.
Mironova, T. V.
Savichev, V. I.
Sokovishin, V. V.
Tcherniega, N. V.
Zemskov, K. I.
description Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm − 1 ), 10 GHz (0.33 cm − 1 ), and 15.6 GHz (0.52 cm − 1 ), while for BSA, it is 8.7 GHz (0.29 cm − 1 ) and 16.5 GHz (0.55 cm − 1 ). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.
doi_str_mv 10.1007/s10946-019-09771-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191865838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191865838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpE0nx2VxVVgQXD2HtE2ly7ZdkxbXf2_WCt48zTC892bmY-wa4RYB8ruAoFPFATUHnefIDydshlkuOeUKTmMPcShIqnN2EcIWADSRnrF0MzTtuLODq5J1_8lX3n2Mriu_khfb2i7ZlHYYnG-696TpksWuGNumu2Rntd0Fd_Vb5-xtdf-6fOTr54en5WLNS4l64I4E1oWU5IrSQpUBFdrKVFSYoRJVilARpJlVSmhRUa0KJWSqCy11TVg6OWc3U-7e9_GqMJhtP_ourjQCNZLKSFJUiUlV-j4E72qz901r_ZdBMEc6ZqJjIh3zQ8ccoklOprA_Puf8X_Q_rm_WbGa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191865838</pqid></control><display><type>article</type><title>Stimulated Low-Frequency Raman Scattering in Albumin</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shevchenko, M. A. ; Chaikov, L. L. ; Kirichenko, M. N. ; Kudryavtseva, A. D. ; Mironova, T. V. ; Savichev, V. I. ; Sokovishin, V. V. ; Tcherniega, N. V. ; Zemskov, K. I.</creator><creatorcontrib>Shevchenko, M. A. ; Chaikov, L. L. ; Kirichenko, M. N. ; Kudryavtseva, A. D. ; Mironova, T. V. ; Savichev, V. I. ; Sokovishin, V. V. ; Tcherniega, N. V. ; Zemskov, K. I.</creatorcontrib><description>Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm − 1 ), 10 GHz (0.33 cm − 1 ), and 15.6 GHz (0.52 cm − 1 ), while for BSA, it is 8.7 GHz (0.29 cm − 1 ) and 16.5 GHz (0.55 cm − 1 ). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.</description><identifier>ISSN: 1071-2836</identifier><identifier>EISSN: 1573-8760</identifier><identifier>DOI: 10.1007/s10946-019-09771-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Elastic properties ; Elastic scattering ; Interferometers ; Lasers ; Microwaves ; Nanoparticles ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Raman spectra ; Resonant frequencies ; RF and Optical Engineering ; Serum albumin</subject><ispartof>Journal of Russian laser research, 2019-01, Vol.40 (1), p.71-75</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</citedby><cites>FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10946-019-09771-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10946-019-09771-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shevchenko, M. A.</creatorcontrib><creatorcontrib>Chaikov, L. L.</creatorcontrib><creatorcontrib>Kirichenko, M. N.</creatorcontrib><creatorcontrib>Kudryavtseva, A. D.</creatorcontrib><creatorcontrib>Mironova, T. V.</creatorcontrib><creatorcontrib>Savichev, V. I.</creatorcontrib><creatorcontrib>Sokovishin, V. V.</creatorcontrib><creatorcontrib>Tcherniega, N. V.</creatorcontrib><creatorcontrib>Zemskov, K. I.</creatorcontrib><title>Stimulated Low-Frequency Raman Scattering in Albumin</title><title>Journal of Russian laser research</title><addtitle>J Russ Laser Res</addtitle><description>Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm − 1 ), 10 GHz (0.33 cm − 1 ), and 15.6 GHz (0.52 cm − 1 ), while for BSA, it is 8.7 GHz (0.29 cm − 1 ) and 16.5 GHz (0.55 cm − 1 ). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.</description><subject>Elastic properties</subject><subject>Elastic scattering</subject><subject>Interferometers</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Nanoparticles</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Raman spectra</subject><subject>Resonant frequencies</subject><subject>RF and Optical Engineering</subject><subject>Serum albumin</subject><issn>1071-2836</issn><issn>1573-8760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpE0nx2VxVVgQXD2HtE2ly7ZdkxbXf2_WCt48zTC892bmY-wa4RYB8ruAoFPFATUHnefIDydshlkuOeUKTmMPcShIqnN2EcIWADSRnrF0MzTtuLODq5J1_8lX3n2Mriu_khfb2i7ZlHYYnG-696TpksWuGNumu2Rntd0Fd_Vb5-xtdf-6fOTr54en5WLNS4l64I4E1oWU5IrSQpUBFdrKVFSYoRJVilARpJlVSmhRUa0KJWSqCy11TVg6OWc3U-7e9_GqMJhtP_ourjQCNZLKSFJUiUlV-j4E72qz901r_ZdBMEc6ZqJjIh3zQ8ccoklOprA_Puf8X_Q_rm_WbGa8</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Shevchenko, M. A.</creator><creator>Chaikov, L. L.</creator><creator>Kirichenko, M. N.</creator><creator>Kudryavtseva, A. D.</creator><creator>Mironova, T. V.</creator><creator>Savichev, V. I.</creator><creator>Sokovishin, V. V.</creator><creator>Tcherniega, N. V.</creator><creator>Zemskov, K. I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Stimulated Low-Frequency Raman Scattering in Albumin</title><author>Shevchenko, M. A. ; Chaikov, L. L. ; Kirichenko, M. N. ; Kudryavtseva, A. D. ; Mironova, T. V. ; Savichev, V. I. ; Sokovishin, V. V. ; Tcherniega, N. V. ; Zemskov, K. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Elastic properties</topic><topic>Elastic scattering</topic><topic>Interferometers</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Nanoparticles</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Raman spectra</topic><topic>Resonant frequencies</topic><topic>RF and Optical Engineering</topic><topic>Serum albumin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shevchenko, M. A.</creatorcontrib><creatorcontrib>Chaikov, L. L.</creatorcontrib><creatorcontrib>Kirichenko, M. N.</creatorcontrib><creatorcontrib>Kudryavtseva, A. D.</creatorcontrib><creatorcontrib>Mironova, T. V.</creatorcontrib><creatorcontrib>Savichev, V. I.</creatorcontrib><creatorcontrib>Sokovishin, V. V.</creatorcontrib><creatorcontrib>Tcherniega, N. V.</creatorcontrib><creatorcontrib>Zemskov, K. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Russian laser research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shevchenko, M. A.</au><au>Chaikov, L. L.</au><au>Kirichenko, M. N.</au><au>Kudryavtseva, A. D.</au><au>Mironova, T. V.</au><au>Savichev, V. I.</au><au>Sokovishin, V. V.</au><au>Tcherniega, N. V.</au><au>Zemskov, K. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulated Low-Frequency Raman Scattering in Albumin</atitle><jtitle>Journal of Russian laser research</jtitle><stitle>J Russ Laser Res</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>40</volume><issue>1</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>1071-2836</issn><eissn>1573-8760</eissn><abstract>Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm − 1 ), 10 GHz (0.33 cm − 1 ), and 15.6 GHz (0.52 cm − 1 ), while for BSA, it is 8.7 GHz (0.29 cm − 1 ) and 16.5 GHz (0.55 cm − 1 ). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10946-019-09771-x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-2836
ispartof Journal of Russian laser research, 2019-01, Vol.40 (1), p.71-75
issn 1071-2836
1573-8760
language eng
recordid cdi_proquest_journals_2191865838
source SpringerLink Journals - AutoHoldings
subjects Elastic properties
Elastic scattering
Interferometers
Lasers
Microwaves
Nanoparticles
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Raman spectra
Resonant frequencies
RF and Optical Engineering
Serum albumin
title Stimulated Low-Frequency Raman Scattering in Albumin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulated%20Low-Frequency%20Raman%20Scattering%20in%20Albumin&rft.jtitle=Journal%20of%20Russian%20laser%20research&rft.au=Shevchenko,%20M.%20A.&rft.date=2019-01-01&rft.volume=40&rft.issue=1&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=1071-2836&rft.eissn=1573-8760&rft_id=info:doi/10.1007/s10946-019-09771-x&rft_dat=%3Cproquest_cross%3E2191865838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191865838&rft_id=info:pmid/&rfr_iscdi=true