Stimulated Low-Frequency Raman Scattering in Albumin
Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum alb...
Gespeichert in:
Veröffentlicht in: | Journal of Russian laser research 2019-01, Vol.40 (1), p.71-75 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Journal of Russian laser research |
container_volume | 40 |
creator | Shevchenko, M. A. Chaikov, L. L. Kirichenko, M. N. Kudryavtseva, A. D. Mironova, T. V. Savichev, V. I. Sokovishin, V. V. Tcherniega, N. V. Zemskov, K. I. |
description | Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm
−
1
), 10 GHz (0.33 cm
−
1
), and 15.6 GHz (0.52 cm
−
1
), while for BSA, it is 8.7 GHz (0.29 cm
−
1
) and 16.5 GHz (0.55 cm
−
1
). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects. |
doi_str_mv | 10.1007/s10946-019-09771-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191865838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191865838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpE0nx2VxVVgQXD2HtE2ly7ZdkxbXf2_WCt48zTC892bmY-wa4RYB8ruAoFPFATUHnefIDydshlkuOeUKTmMPcShIqnN2EcIWADSRnrF0MzTtuLODq5J1_8lX3n2Mriu_khfb2i7ZlHYYnG-696TpksWuGNumu2Rntd0Fd_Vb5-xtdf-6fOTr54en5WLNS4l64I4E1oWU5IrSQpUBFdrKVFSYoRJVilARpJlVSmhRUa0KJWSqCy11TVg6OWc3U-7e9_GqMJhtP_ourjQCNZLKSFJUiUlV-j4E72qz901r_ZdBMEc6ZqJjIh3zQ8ccoklOprA_Puf8X_Q_rm_WbGa8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191865838</pqid></control><display><type>article</type><title>Stimulated Low-Frequency Raman Scattering in Albumin</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shevchenko, M. A. ; Chaikov, L. L. ; Kirichenko, M. N. ; Kudryavtseva, A. D. ; Mironova, T. V. ; Savichev, V. I. ; Sokovishin, V. V. ; Tcherniega, N. V. ; Zemskov, K. I.</creator><creatorcontrib>Shevchenko, M. A. ; Chaikov, L. L. ; Kirichenko, M. N. ; Kudryavtseva, A. D. ; Mironova, T. V. ; Savichev, V. I. ; Sokovishin, V. V. ; Tcherniega, N. V. ; Zemskov, K. I.</creatorcontrib><description>Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm
−
1
), 10 GHz (0.33 cm
−
1
), and 15.6 GHz (0.52 cm
−
1
), while for BSA, it is 8.7 GHz (0.29 cm
−
1
) and 16.5 GHz (0.55 cm
−
1
). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.</description><identifier>ISSN: 1071-2836</identifier><identifier>EISSN: 1573-8760</identifier><identifier>DOI: 10.1007/s10946-019-09771-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Elastic properties ; Elastic scattering ; Interferometers ; Lasers ; Microwaves ; Nanoparticles ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Raman spectra ; Resonant frequencies ; RF and Optical Engineering ; Serum albumin</subject><ispartof>Journal of Russian laser research, 2019-01, Vol.40 (1), p.71-75</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</citedby><cites>FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10946-019-09771-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10946-019-09771-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shevchenko, M. A.</creatorcontrib><creatorcontrib>Chaikov, L. L.</creatorcontrib><creatorcontrib>Kirichenko, M. N.</creatorcontrib><creatorcontrib>Kudryavtseva, A. D.</creatorcontrib><creatorcontrib>Mironova, T. V.</creatorcontrib><creatorcontrib>Savichev, V. I.</creatorcontrib><creatorcontrib>Sokovishin, V. V.</creatorcontrib><creatorcontrib>Tcherniega, N. V.</creatorcontrib><creatorcontrib>Zemskov, K. I.</creatorcontrib><title>Stimulated Low-Frequency Raman Scattering in Albumin</title><title>Journal of Russian laser research</title><addtitle>J Russ Laser Res</addtitle><description>Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm
−
1
), 10 GHz (0.33 cm
−
1
), and 15.6 GHz (0.52 cm
−
1
), while for BSA, it is 8.7 GHz (0.29 cm
−
1
) and 16.5 GHz (0.55 cm
−
1
). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.</description><subject>Elastic properties</subject><subject>Elastic scattering</subject><subject>Interferometers</subject><subject>Lasers</subject><subject>Microwaves</subject><subject>Nanoparticles</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Raman spectra</subject><subject>Resonant frequencies</subject><subject>RF and Optical Engineering</subject><subject>Serum albumin</subject><issn>1071-2836</issn><issn>1573-8760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpE0nx2VxVVgQXD2HtE2ly7ZdkxbXf2_WCt48zTC892bmY-wa4RYB8ruAoFPFATUHnefIDydshlkuOeUKTmMPcShIqnN2EcIWADSRnrF0MzTtuLODq5J1_8lX3n2Mriu_khfb2i7ZlHYYnG-696TpksWuGNumu2Rntd0Fd_Vb5-xtdf-6fOTr54en5WLNS4l64I4E1oWU5IrSQpUBFdrKVFSYoRJVilARpJlVSmhRUa0KJWSqCy11TVg6OWc3U-7e9_GqMJhtP_ourjQCNZLKSFJUiUlV-j4E72qz901r_ZdBMEc6ZqJjIh3zQ8ccoklOprA_Puf8X_Q_rm_WbGa8</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Shevchenko, M. A.</creator><creator>Chaikov, L. L.</creator><creator>Kirichenko, M. N.</creator><creator>Kudryavtseva, A. D.</creator><creator>Mironova, T. V.</creator><creator>Savichev, V. I.</creator><creator>Sokovishin, V. V.</creator><creator>Tcherniega, N. V.</creator><creator>Zemskov, K. I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Stimulated Low-Frequency Raman Scattering in Albumin</title><author>Shevchenko, M. A. ; Chaikov, L. L. ; Kirichenko, M. N. ; Kudryavtseva, A. D. ; Mironova, T. V. ; Savichev, V. I. ; Sokovishin, V. V. ; Tcherniega, N. V. ; Zemskov, K. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e821fb338ebca0d508b9a342d15162d410d8045a66292d8f6b62349b939f81ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Elastic properties</topic><topic>Elastic scattering</topic><topic>Interferometers</topic><topic>Lasers</topic><topic>Microwaves</topic><topic>Nanoparticles</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Raman spectra</topic><topic>Resonant frequencies</topic><topic>RF and Optical Engineering</topic><topic>Serum albumin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shevchenko, M. A.</creatorcontrib><creatorcontrib>Chaikov, L. L.</creatorcontrib><creatorcontrib>Kirichenko, M. N.</creatorcontrib><creatorcontrib>Kudryavtseva, A. D.</creatorcontrib><creatorcontrib>Mironova, T. V.</creatorcontrib><creatorcontrib>Savichev, V. I.</creatorcontrib><creatorcontrib>Sokovishin, V. V.</creatorcontrib><creatorcontrib>Tcherniega, N. V.</creatorcontrib><creatorcontrib>Zemskov, K. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Russian laser research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shevchenko, M. A.</au><au>Chaikov, L. L.</au><au>Kirichenko, M. N.</au><au>Kudryavtseva, A. D.</au><au>Mironova, T. V.</au><au>Savichev, V. I.</au><au>Sokovishin, V. V.</au><au>Tcherniega, N. V.</au><au>Zemskov, K. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulated Low-Frequency Raman Scattering in Albumin</atitle><jtitle>Journal of Russian laser research</jtitle><stitle>J Russ Laser Res</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>40</volume><issue>1</issue><spage>71</spage><epage>75</epage><pages>71-75</pages><issn>1071-2836</issn><eissn>1573-8760</eissn><abstract>Stimulated low-frequency Raman scattering (SLFRS) can provide important information on elastic properties of different nanoparticle systems, in particular, biological nanostructures. In the present study, for the first time we investigate low-frequency vibrational modes in human and bovine serum albumin (HSA and BSA), in view of the SLFRS method. We use 20 ns ruby-laser pulses for excitation. The SLFRS frequency shifts, corresponding to acoustic eigenfrequencies of the sample, are registered by Fabry–Pérot interferometers. For HAS, the set of eigenfrequencies obtained is 6 GHz (0.2 cm
−
1
), 10 GHz (0.33 cm
−
1
), and 15.6 GHz (0.52 cm
−
1
), while for BSA, it is 8.7 GHz (0.29 cm
−
1
) and 16.5 GHz (0.55 cm
−
1
). We also measure the conversion efficiency and threshold. The SLFRS can be applied for biological-object identification and impact on the biological objects.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10946-019-09771-x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1071-2836 |
ispartof | Journal of Russian laser research, 2019-01, Vol.40 (1), p.71-75 |
issn | 1071-2836 1573-8760 |
language | eng |
recordid | cdi_proquest_journals_2191865838 |
source | SpringerLink Journals - AutoHoldings |
subjects | Elastic properties Elastic scattering Interferometers Lasers Microwaves Nanoparticles Optical Devices Optics Photonics Physics Physics and Astronomy Raman spectra Resonant frequencies RF and Optical Engineering Serum albumin |
title | Stimulated Low-Frequency Raman Scattering in Albumin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulated%20Low-Frequency%20Raman%20Scattering%20in%20Albumin&rft.jtitle=Journal%20of%20Russian%20laser%20research&rft.au=Shevchenko,%20M.%20A.&rft.date=2019-01-01&rft.volume=40&rft.issue=1&rft.spage=71&rft.epage=75&rft.pages=71-75&rft.issn=1071-2836&rft.eissn=1573-8760&rft_id=info:doi/10.1007/s10946-019-09771-x&rft_dat=%3Cproquest_cross%3E2191865838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191865838&rft_id=info:pmid/&rfr_iscdi=true |