Adaptive BEM with inexact PCG solver yields almost optimal computational costs

We consider the preconditioned conjugate gradient method (PCG) with optimal preconditioner in the frame of the boundary element method for elliptic first-kind integral equations. Our adaptive algorithm steers the termination of PCG as well as the local mesh-refinement. Besides convergence with optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2019-04, Vol.141 (4), p.967-1008
Hauptverfasser: Führer, Thomas, Haberl, Alexander, Praetorius, Dirk, Schimanko, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 4
container_start_page 967
container_title Numerische Mathematik
container_volume 141
creator Führer, Thomas
Haberl, Alexander
Praetorius, Dirk
Schimanko, Stefan
description We consider the preconditioned conjugate gradient method (PCG) with optimal preconditioner in the frame of the boundary element method for elliptic first-kind integral equations. Our adaptive algorithm steers the termination of PCG as well as the local mesh-refinement. Besides convergence with optimal algebraic rates, we also prove almost optimal computational complexity. In particular, we provide an additive Schwarz preconditioner which can be computed in linear complexity and which is optimal in the sense that the condition numbers of the preconditioned systems are uniformly bounded. As model problem serves the 2D or 3D Laplace operator and the associated weakly-singular integral equation with energy space H ~ - 1 / 2 ( Γ ) . The main results also hold for the hyper-singular integral equation with energy space H 1 / 2 ( Γ ) .
doi_str_mv 10.1007/s00211-018-1011-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191864708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191864708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-55e81e46f814e6217d8918543a144c53b0afc213afa1c1f4213e45036fba803c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9ei9k2Qey1pqFepjoeAupGmiU6bNmKTV_ntTR3Dl6p4L5zscDiHnCJcIUF4FgBwxA6wyhCTwgAyg5iJjOReHSUNeZ6KuX4_JSQhLACwLjgPyMFqoLjZbQ68n9_Szie-0WZsvpSN9Gk9pcO3WeLprTLsIVLUrFyJ1CViplmq36jZRxcatf74Qwyk5sqoN5uz3DsnLzeR5fJvNHqd349Es00zUMRPCVGh4YSvkpsixXFQ1VoIzhZxrweagrM6RKatQo-VJGi6AFXauKmCaDclFn9t597ExIcql2_hUI8gcU1TBS6iSC3uX9i4Eb6zsfGrudxJB7meT_WwyzSb3s0lMTN4zIXnXb8b_Jf8PfQMdb26q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191864708</pqid></control><display><type>article</type><title>Adaptive BEM with inexact PCG solver yields almost optimal computational costs</title><source>Springer Online Journals Complete</source><creator>Führer, Thomas ; Haberl, Alexander ; Praetorius, Dirk ; Schimanko, Stefan</creator><creatorcontrib>Führer, Thomas ; Haberl, Alexander ; Praetorius, Dirk ; Schimanko, Stefan</creatorcontrib><description>We consider the preconditioned conjugate gradient method (PCG) with optimal preconditioner in the frame of the boundary element method for elliptic first-kind integral equations. Our adaptive algorithm steers the termination of PCG as well as the local mesh-refinement. Besides convergence with optimal algebraic rates, we also prove almost optimal computational complexity. In particular, we provide an additive Schwarz preconditioner which can be computed in linear complexity and which is optimal in the sense that the condition numbers of the preconditioned systems are uniformly bounded. As model problem serves the 2D or 3D Laplace operator and the associated weakly-singular integral equation with energy space H ~ - 1 / 2 ( Γ ) . The main results also hold for the hyper-singular integral equation with energy space H 1 / 2 ( Γ ) .</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-018-1011-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Boundary element method ; Complexity ; Computation ; Conjugate gradient method ; Elliptic functions ; Finite element method ; Integral equations ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Numerical Analysis ; Numerical and Computational Physics ; Operators (mathematics) ; Simulation ; Singular integral equations ; Theoretical ; Three dimensional models ; Two dimensional models</subject><ispartof>Numerische Mathematik, 2019-04, Vol.141 (4), p.967-1008</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-55e81e46f814e6217d8918543a144c53b0afc213afa1c1f4213e45036fba803c3</citedby><cites>FETCH-LOGICAL-c359t-55e81e46f814e6217d8918543a144c53b0afc213afa1c1f4213e45036fba803c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-018-1011-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-018-1011-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Haberl, Alexander</creatorcontrib><creatorcontrib>Praetorius, Dirk</creatorcontrib><creatorcontrib>Schimanko, Stefan</creatorcontrib><title>Adaptive BEM with inexact PCG solver yields almost optimal computational costs</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We consider the preconditioned conjugate gradient method (PCG) with optimal preconditioner in the frame of the boundary element method for elliptic first-kind integral equations. Our adaptive algorithm steers the termination of PCG as well as the local mesh-refinement. Besides convergence with optimal algebraic rates, we also prove almost optimal computational complexity. In particular, we provide an additive Schwarz preconditioner which can be computed in linear complexity and which is optimal in the sense that the condition numbers of the preconditioned systems are uniformly bounded. As model problem serves the 2D or 3D Laplace operator and the associated weakly-singular integral equation with energy space H ~ - 1 / 2 ( Γ ) . The main results also hold for the hyper-singular integral equation with energy space H 1 / 2 ( Γ ) .</description><subject>Adaptive algorithms</subject><subject>Boundary element method</subject><subject>Complexity</subject><subject>Computation</subject><subject>Conjugate gradient method</subject><subject>Elliptic functions</subject><subject>Finite element method</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Simulation</subject><subject>Singular integral equations</subject><subject>Theoretical</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9ei9k2Qey1pqFepjoeAupGmiU6bNmKTV_ntTR3Dl6p4L5zscDiHnCJcIUF4FgBwxA6wyhCTwgAyg5iJjOReHSUNeZ6KuX4_JSQhLACwLjgPyMFqoLjZbQ68n9_Szie-0WZsvpSN9Gk9pcO3WeLprTLsIVLUrFyJ1CViplmq36jZRxcatf74Qwyk5sqoN5uz3DsnLzeR5fJvNHqd349Es00zUMRPCVGh4YSvkpsixXFQ1VoIzhZxrweagrM6RKatQo-VJGi6AFXauKmCaDclFn9t597ExIcql2_hUI8gcU1TBS6iSC3uX9i4Eb6zsfGrudxJB7meT_WwyzSb3s0lMTN4zIXnXb8b_Jf8PfQMdb26q</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Führer, Thomas</creator><creator>Haberl, Alexander</creator><creator>Praetorius, Dirk</creator><creator>Schimanko, Stefan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190403</creationdate><title>Adaptive BEM with inexact PCG solver yields almost optimal computational costs</title><author>Führer, Thomas ; Haberl, Alexander ; Praetorius, Dirk ; Schimanko, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-55e81e46f814e6217d8918543a144c53b0afc213afa1c1f4213e45036fba803c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>Boundary element method</topic><topic>Complexity</topic><topic>Computation</topic><topic>Conjugate gradient method</topic><topic>Elliptic functions</topic><topic>Finite element method</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Simulation</topic><topic>Singular integral equations</topic><topic>Theoretical</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Haberl, Alexander</creatorcontrib><creatorcontrib>Praetorius, Dirk</creatorcontrib><creatorcontrib>Schimanko, Stefan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Führer, Thomas</au><au>Haberl, Alexander</au><au>Praetorius, Dirk</au><au>Schimanko, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive BEM with inexact PCG solver yields almost optimal computational costs</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2019-04-03</date><risdate>2019</risdate><volume>141</volume><issue>4</issue><spage>967</spage><epage>1008</epage><pages>967-1008</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We consider the preconditioned conjugate gradient method (PCG) with optimal preconditioner in the frame of the boundary element method for elliptic first-kind integral equations. Our adaptive algorithm steers the termination of PCG as well as the local mesh-refinement. Besides convergence with optimal algebraic rates, we also prove almost optimal computational complexity. In particular, we provide an additive Schwarz preconditioner which can be computed in linear complexity and which is optimal in the sense that the condition numbers of the preconditioned systems are uniformly bounded. As model problem serves the 2D or 3D Laplace operator and the associated weakly-singular integral equation with energy space H ~ - 1 / 2 ( Γ ) . The main results also hold for the hyper-singular integral equation with energy space H 1 / 2 ( Γ ) .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-018-1011-1</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2019-04, Vol.141 (4), p.967-1008
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2191864708
source Springer Online Journals Complete
subjects Adaptive algorithms
Boundary element method
Complexity
Computation
Conjugate gradient method
Elliptic functions
Finite element method
Integral equations
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Nonlinear programming
Numerical Analysis
Numerical and Computational Physics
Operators (mathematics)
Simulation
Singular integral equations
Theoretical
Three dimensional models
Two dimensional models
title Adaptive BEM with inexact PCG solver yields almost optimal computational costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20BEM%20with%20inexact%20PCG%20solver%20yields%20almost%20optimal%20computational%20costs&rft.jtitle=Numerische%20Mathematik&rft.au=F%C3%BChrer,%20Thomas&rft.date=2019-04-03&rft.volume=141&rft.issue=4&rft.spage=967&rft.epage=1008&rft.pages=967-1008&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-018-1011-1&rft_dat=%3Cproquest_cross%3E2191864708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191864708&rft_id=info:pmid/&rfr_iscdi=true