Parallel Machine Scheduling by Column Generation
Parallel machine scheduling problems concern the scheduling of n jobs on m machines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only -hard, but also very hard from a practical point of view. In this paper, we show that strong and fa...
Gespeichert in:
Veröffentlicht in: | Operations research 1999-11, Vol.47 (6), p.862-872 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 872 |
---|---|
container_issue | 6 |
container_start_page | 862 |
container_title | Operations research |
container_volume | 47 |
creator | van den Akker, J. M Hoogeveen, J. A van de Velde, S. L |
description | Parallel machine scheduling problems concern the scheduling of n jobs on m machines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only -hard, but also very hard from a practical point of view. In this paper, we show that strong and fast linear programming lower bounds can be computed for an important class of machine scheduling problems with additive objective functions. Characteristic of these problems is that on each machine the order of the jobs in the relevant part of the schedule is obtained through some priority rule. To that end, we formulate these parallel machine scheduling problems as a set covering problem with an exponential number of binary variables, n covering constraints, and a single side constraint. We show that the linear programming relaxation can be solved efficiently by column generation because the pricing problem is solvable in pseudo-polynomial time. We display this approach on the problem of minimizing total weighted completion time on m identical machines. Our computational results show that the lower bound is singularly strong and that the outcome of the linear program is often integral. Moreover, they show that our branch-and-bound algorithm that uses the linear programming lower bound outperforms the previously best algorithm. |
doi_str_mv | 10.1287/opre.47.6.862 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_219183012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>222976</jstor_id><sourcerecordid>222976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f86512a6d51821ce54d788c5f9f8f15f4491718c9719c05f3c9afc8e3d8068823</originalsourceid><addsrcrecordid>eNqF0EtLxDAUBeAgCtbRpSs3xYUrW_NuspRBR2FEQQV3IabJtEOnGZMWmX9vS30sXd3F-e69cAA4RTBHWBRXfhtsTouc54LjPZAghnnGKCf7IIGQwIxw-nYIjmJcQwgl4ywB8EkH3TS2SR-0qerWps-msmXf1O0qfd-lc9_0mzZd2NYG3dW-PQYHTjfRnnzPGXi9vXmZ32XLx8X9_HqZGUJFlznBGcKalwwJjIxltCyEMMxJJxxijlKJCiSMLJA0kDlipHZGWFIKyIXAZAbOp7vb4D96Gzu19n1oh5cKI4kEgWhE2YRM8DEG69Q21BsddgpBNXaixk4ULRRXQyeDP5v8OnY-_GKMsSz4kF5Oad06Hzbx32MXE6_qVfVZD9HP3ujiH_wCe355EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219183012</pqid></control><display><type>article</type><title>Parallel Machine Scheduling by Column Generation</title><source>Jstor Complete Legacy</source><source>Informs</source><source>EBSCOhost Business Source Complete</source><creator>van den Akker, J. M ; Hoogeveen, J. A ; van de Velde, S. L</creator><creatorcontrib>van den Akker, J. M ; Hoogeveen, J. A ; van de Velde, S. L</creatorcontrib><description>Parallel machine scheduling problems concern the scheduling of n jobs on m machines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only -hard, but also very hard from a practical point of view. In this paper, we show that strong and fast linear programming lower bounds can be computed for an important class of machine scheduling problems with additive objective functions. Characteristic of these problems is that on each machine the order of the jobs in the relevant part of the schedule is obtained through some priority rule. To that end, we formulate these parallel machine scheduling problems as a set covering problem with an exponential number of binary variables, n covering constraints, and a single side constraint. We show that the linear programming relaxation can be solved efficiently by column generation because the pricing problem is solvable in pseudo-polynomial time. We display this approach on the problem of minimizing total weighted completion time on m identical machines. Our computational results show that the lower bound is singularly strong and that the outcome of the linear program is often integral. Moreover, they show that our branch-and-bound algorithm that uses the linear programming lower bound outperforms the previously best algorithm.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.47.6.862</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Algorithms ; column generation ; Deadlines ; deterministic ; Heuristics ; Job performance evaluation ; Job shops ; Linear programming ; Machinery ; multiple machine ; Objective functions ; Operations research ; Optimal solutions ; Production scheduling ; Recursion ; Scheduling ; sequencing ; Studies</subject><ispartof>Operations research, 1999-11, Vol.47 (6), p.862-872</ispartof><rights>Copyright 1999 The Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov/Dec 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f86512a6d51821ce54d788c5f9f8f15f4491718c9719c05f3c9afc8e3d8068823</citedby><cites>FETCH-LOGICAL-c348t-f86512a6d51821ce54d788c5f9f8f15f4491718c9719c05f3c9afc8e3d8068823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/222976$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/opre.47.6.862$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,799,3679,27901,27902,57992,58225,62589</link.rule.ids></links><search><creatorcontrib>van den Akker, J. M</creatorcontrib><creatorcontrib>Hoogeveen, J. A</creatorcontrib><creatorcontrib>van de Velde, S. L</creatorcontrib><title>Parallel Machine Scheduling by Column Generation</title><title>Operations research</title><description>Parallel machine scheduling problems concern the scheduling of n jobs on m machines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only -hard, but also very hard from a practical point of view. In this paper, we show that strong and fast linear programming lower bounds can be computed for an important class of machine scheduling problems with additive objective functions. Characteristic of these problems is that on each machine the order of the jobs in the relevant part of the schedule is obtained through some priority rule. To that end, we formulate these parallel machine scheduling problems as a set covering problem with an exponential number of binary variables, n covering constraints, and a single side constraint. We show that the linear programming relaxation can be solved efficiently by column generation because the pricing problem is solvable in pseudo-polynomial time. We display this approach on the problem of minimizing total weighted completion time on m identical machines. Our computational results show that the lower bound is singularly strong and that the outcome of the linear program is often integral. Moreover, they show that our branch-and-bound algorithm that uses the linear programming lower bound outperforms the previously best algorithm.</description><subject>Algorithms</subject><subject>column generation</subject><subject>Deadlines</subject><subject>deterministic</subject><subject>Heuristics</subject><subject>Job performance evaluation</subject><subject>Job shops</subject><subject>Linear programming</subject><subject>Machinery</subject><subject>multiple machine</subject><subject>Objective functions</subject><subject>Operations research</subject><subject>Optimal solutions</subject><subject>Production scheduling</subject><subject>Recursion</subject><subject>Scheduling</subject><subject>sequencing</subject><subject>Studies</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0EtLxDAUBeAgCtbRpSs3xYUrW_NuspRBR2FEQQV3IabJtEOnGZMWmX9vS30sXd3F-e69cAA4RTBHWBRXfhtsTouc54LjPZAghnnGKCf7IIGQwIxw-nYIjmJcQwgl4ywB8EkH3TS2SR-0qerWps-msmXf1O0qfd-lc9_0mzZd2NYG3dW-PQYHTjfRnnzPGXi9vXmZ32XLx8X9_HqZGUJFlznBGcKalwwJjIxltCyEMMxJJxxijlKJCiSMLJA0kDlipHZGWFIKyIXAZAbOp7vb4D96Gzu19n1oh5cKI4kEgWhE2YRM8DEG69Q21BsddgpBNXaixk4ULRRXQyeDP5v8OnY-_GKMsSz4kF5Oad06Hzbx32MXE6_qVfVZD9HP3ujiH_wCe355EQ</recordid><startdate>19991101</startdate><enddate>19991101</enddate><creator>van den Akker, J. M</creator><creator>Hoogeveen, J. A</creator><creator>van de Velde, S. L</creator><general>INFORMS</general><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88F</scope><scope>8AL</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19991101</creationdate><title>Parallel Machine Scheduling by Column Generation</title><author>van den Akker, J. M ; Hoogeveen, J. A ; van de Velde, S. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f86512a6d51821ce54d788c5f9f8f15f4491718c9719c05f3c9afc8e3d8068823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>column generation</topic><topic>Deadlines</topic><topic>deterministic</topic><topic>Heuristics</topic><topic>Job performance evaluation</topic><topic>Job shops</topic><topic>Linear programming</topic><topic>Machinery</topic><topic>multiple machine</topic><topic>Objective functions</topic><topic>Operations research</topic><topic>Optimal solutions</topic><topic>Production scheduling</topic><topic>Recursion</topic><topic>Scheduling</topic><topic>sequencing</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van den Akker, J. M</creatorcontrib><creatorcontrib>Hoogeveen, J. A</creatorcontrib><creatorcontrib>van de Velde, S. L</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van den Akker, J. M</au><au>Hoogeveen, J. A</au><au>van de Velde, S. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Machine Scheduling by Column Generation</atitle><jtitle>Operations research</jtitle><date>1999-11-01</date><risdate>1999</risdate><volume>47</volume><issue>6</issue><spage>862</spage><epage>872</epage><pages>862-872</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>Parallel machine scheduling problems concern the scheduling of n jobs on m machines to minimize some function of the job completion times. If preemption is not allowed, then most problems are not only -hard, but also very hard from a practical point of view. In this paper, we show that strong and fast linear programming lower bounds can be computed for an important class of machine scheduling problems with additive objective functions. Characteristic of these problems is that on each machine the order of the jobs in the relevant part of the schedule is obtained through some priority rule. To that end, we formulate these parallel machine scheduling problems as a set covering problem with an exponential number of binary variables, n covering constraints, and a single side constraint. We show that the linear programming relaxation can be solved efficiently by column generation because the pricing problem is solvable in pseudo-polynomial time. We display this approach on the problem of minimizing total weighted completion time on m identical machines. Our computational results show that the lower bound is singularly strong and that the outcome of the linear program is often integral. Moreover, they show that our branch-and-bound algorithm that uses the linear programming lower bound outperforms the previously best algorithm.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/opre.47.6.862</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1999-11, Vol.47 (6), p.862-872 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_proquest_journals_219183012 |
source | Jstor Complete Legacy; Informs; EBSCOhost Business Source Complete |
subjects | Algorithms column generation Deadlines deterministic Heuristics Job performance evaluation Job shops Linear programming Machinery multiple machine Objective functions Operations research Optimal solutions Production scheduling Recursion Scheduling sequencing Studies |
title | Parallel Machine Scheduling by Column Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Machine%20Scheduling%20by%20Column%20Generation&rft.jtitle=Operations%20research&rft.au=van%20den%20Akker,%20J.%20M&rft.date=1999-11-01&rft.volume=47&rft.issue=6&rft.spage=862&rft.epage=872&rft.pages=862-872&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.47.6.862&rft_dat=%3Cjstor_proqu%3E222976%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219183012&rft_id=info:pmid/&rft_jstor_id=222976&rfr_iscdi=true |