Adaptive mapping for high order WENO methods

In this paper, a novel mapping approach through the use of adaptive mapping functions is introduced for high order weighted essentially non-oscillatory (WENO) methods. The new class of adaptive mapping functions are designed to adjust themselves to the solution based on a simple parameter calculated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-03, Vol.381, p.162-188
Hauptverfasser: U S, Vevek, Zang, B., New, T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 162
container_title Journal of computational physics
container_volume 381
creator U S, Vevek
Zang, B.
New, T.H.
description In this paper, a novel mapping approach through the use of adaptive mapping functions is introduced for high order weighted essentially non-oscillatory (WENO) methods. The new class of adaptive mapping functions are designed to adjust themselves to the solution based on a simple parameter calculated using the smoothness indicators that are readily available during computation. It is shown that this adaptive nature allows the resultant mapped WENO scheme to maintain sub-stencil weights close to the optimal weights in smooth regions without amplifying the weights of non-smooth stencils containing discontinuities. Therefore, adaptive mapping achieves enhanced accuracy in smooth regions and is more resistant against spurious oscillations near discontinuities. Taylor series analysis of the seventh order finite volume WENO scheme has been performed to demonstrate the loss of accuracy of the original WENO method near critical points. The convergence rates of the seventh order finite volume WENO scheme with adaptive mapping have been shown through a simple numerical example. Excellent results have been obtained for one-dimensional linear advection cases especially over long output times. Improved results have also been obtained for one- and two-dimensional Euler equation test cases. •Derivation and comprehensive Taylor series analysis of smoothness indicators of seventh order WENO scheme.•Assessment of convergence properties of finite volume schemes at critical points using a novel, systematic approach.•A generic easy-to-implement class of adaptive mapping functions.
doi_str_mv 10.1016/j.jcp.2018.12.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191827271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999119300154</els_id><sourcerecordid>2191827271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9502317594521583cf147156b30a62c97c395aeec1f2942b70123cc0bccccc2b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gisZJwd46TWExVVT6kii4gRitxnNYRrYOdVuLf46rM3HLL-9zHw9gtQoaAxUOf9XrICLDKkDLg-RmbIEhIqcTinE0ACFMpJV6yqxB6AKhEXk3Y_ayth9EeTLKth8Hu1knnfLKx603ifGt88rl4WyVbM25cG67ZRVd_BXPz16fs42nxPn9Jl6vn1_lsmWpeVGMqBRDHUshcEIqK6w7zEkXRcKgL0rLUXIraGI0dyZyaEpC41tDoY1HDp-zuNHfw7ntvwqh6t_e7uFIRSqyojF_FFJ5S2rsQvOnU4O229j8KQR2lqF5FKeooRSGpKCUyjyfGxPMP1ngVtDU7bVrrjR5V6-w_9C9Romcd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191827271</pqid></control><display><type>article</type><title>Adaptive mapping for high order WENO methods</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>U S, Vevek ; Zang, B. ; New, T.H.</creator><creatorcontrib>U S, Vevek ; Zang, B. ; New, T.H.</creatorcontrib><description>In this paper, a novel mapping approach through the use of adaptive mapping functions is introduced for high order weighted essentially non-oscillatory (WENO) methods. The new class of adaptive mapping functions are designed to adjust themselves to the solution based on a simple parameter calculated using the smoothness indicators that are readily available during computation. It is shown that this adaptive nature allows the resultant mapped WENO scheme to maintain sub-stencil weights close to the optimal weights in smooth regions without amplifying the weights of non-smooth stencils containing discontinuities. Therefore, adaptive mapping achieves enhanced accuracy in smooth regions and is more resistant against spurious oscillations near discontinuities. Taylor series analysis of the seventh order finite volume WENO scheme has been performed to demonstrate the loss of accuracy of the original WENO method near critical points. The convergence rates of the seventh order finite volume WENO scheme with adaptive mapping have been shown through a simple numerical example. Excellent results have been obtained for one-dimensional linear advection cases especially over long output times. Improved results have also been obtained for one- and two-dimensional Euler equation test cases. •Derivation and comprehensive Taylor series analysis of smoothness indicators of seventh order WENO scheme.•Assessment of convergence properties of finite volume schemes at critical points using a novel, systematic approach.•A generic easy-to-implement class of adaptive mapping functions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.12.034</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Adaptive mapping ; Computational physics ; Euler-Lagrange equation ; Finite volume ; High order ; Hyperbolic problems ; Mapped WENO ; Mapping ; Smoothness ; Taylor series</subject><ispartof>Journal of computational physics, 2019-03, Vol.381, p.162-188</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Mar 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9502317594521583cf147156b30a62c97c395aeec1f2942b70123cc0bccccc2b3</citedby><cites>FETCH-LOGICAL-c368t-9502317594521583cf147156b30a62c97c395aeec1f2942b70123cc0bccccc2b3</cites><orcidid>0000-0003-0703-2921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2018.12.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>U S, Vevek</creatorcontrib><creatorcontrib>Zang, B.</creatorcontrib><creatorcontrib>New, T.H.</creatorcontrib><title>Adaptive mapping for high order WENO methods</title><title>Journal of computational physics</title><description>In this paper, a novel mapping approach through the use of adaptive mapping functions is introduced for high order weighted essentially non-oscillatory (WENO) methods. The new class of adaptive mapping functions are designed to adjust themselves to the solution based on a simple parameter calculated using the smoothness indicators that are readily available during computation. It is shown that this adaptive nature allows the resultant mapped WENO scheme to maintain sub-stencil weights close to the optimal weights in smooth regions without amplifying the weights of non-smooth stencils containing discontinuities. Therefore, adaptive mapping achieves enhanced accuracy in smooth regions and is more resistant against spurious oscillations near discontinuities. Taylor series analysis of the seventh order finite volume WENO scheme has been performed to demonstrate the loss of accuracy of the original WENO method near critical points. The convergence rates of the seventh order finite volume WENO scheme with adaptive mapping have been shown through a simple numerical example. Excellent results have been obtained for one-dimensional linear advection cases especially over long output times. Improved results have also been obtained for one- and two-dimensional Euler equation test cases. •Derivation and comprehensive Taylor series analysis of smoothness indicators of seventh order WENO scheme.•Assessment of convergence properties of finite volume schemes at critical points using a novel, systematic approach.•A generic easy-to-implement class of adaptive mapping functions.</description><subject>Adaptive mapping</subject><subject>Computational physics</subject><subject>Euler-Lagrange equation</subject><subject>Finite volume</subject><subject>High order</subject><subject>Hyperbolic problems</subject><subject>Mapped WENO</subject><subject>Mapping</subject><subject>Smoothness</subject><subject>Taylor series</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gisZJwd46TWExVVT6kii4gRitxnNYRrYOdVuLf46rM3HLL-9zHw9gtQoaAxUOf9XrICLDKkDLg-RmbIEhIqcTinE0ACFMpJV6yqxB6AKhEXk3Y_ayth9EeTLKth8Hu1knnfLKx603ifGt88rl4WyVbM25cG67ZRVd_BXPz16fs42nxPn9Jl6vn1_lsmWpeVGMqBRDHUshcEIqK6w7zEkXRcKgL0rLUXIraGI0dyZyaEpC41tDoY1HDp-zuNHfw7ntvwqh6t_e7uFIRSqyojF_FFJ5S2rsQvOnU4O229j8KQR2lqF5FKeooRSGpKCUyjyfGxPMP1ngVtDU7bVrrjR5V6-w_9C9Romcd</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>U S, Vevek</creator><creator>Zang, B.</creator><creator>New, T.H.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0703-2921</orcidid></search><sort><creationdate>20190315</creationdate><title>Adaptive mapping for high order WENO methods</title><author>U S, Vevek ; Zang, B. ; New, T.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9502317594521583cf147156b30a62c97c395aeec1f2942b70123cc0bccccc2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive mapping</topic><topic>Computational physics</topic><topic>Euler-Lagrange equation</topic><topic>Finite volume</topic><topic>High order</topic><topic>Hyperbolic problems</topic><topic>Mapped WENO</topic><topic>Mapping</topic><topic>Smoothness</topic><topic>Taylor series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>U S, Vevek</creatorcontrib><creatorcontrib>Zang, B.</creatorcontrib><creatorcontrib>New, T.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>U S, Vevek</au><au>Zang, B.</au><au>New, T.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive mapping for high order WENO methods</atitle><jtitle>Journal of computational physics</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>381</volume><spage>162</spage><epage>188</epage><pages>162-188</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, a novel mapping approach through the use of adaptive mapping functions is introduced for high order weighted essentially non-oscillatory (WENO) methods. The new class of adaptive mapping functions are designed to adjust themselves to the solution based on a simple parameter calculated using the smoothness indicators that are readily available during computation. It is shown that this adaptive nature allows the resultant mapped WENO scheme to maintain sub-stencil weights close to the optimal weights in smooth regions without amplifying the weights of non-smooth stencils containing discontinuities. Therefore, adaptive mapping achieves enhanced accuracy in smooth regions and is more resistant against spurious oscillations near discontinuities. Taylor series analysis of the seventh order finite volume WENO scheme has been performed to demonstrate the loss of accuracy of the original WENO method near critical points. The convergence rates of the seventh order finite volume WENO scheme with adaptive mapping have been shown through a simple numerical example. Excellent results have been obtained for one-dimensional linear advection cases especially over long output times. Improved results have also been obtained for one- and two-dimensional Euler equation test cases. •Derivation and comprehensive Taylor series analysis of smoothness indicators of seventh order WENO scheme.•Assessment of convergence properties of finite volume schemes at critical points using a novel, systematic approach.•A generic easy-to-implement class of adaptive mapping functions.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.12.034</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0703-2921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-03, Vol.381, p.162-188
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2191827271
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive mapping
Computational physics
Euler-Lagrange equation
Finite volume
High order
Hyperbolic problems
Mapped WENO
Mapping
Smoothness
Taylor series
title Adaptive mapping for high order WENO methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20mapping%20for%20high%20order%20WENO%20methods&rft.jtitle=Journal%20of%20computational%20physics&rft.au=U%20S,%20Vevek&rft.date=2019-03-15&rft.volume=381&rft.spage=162&rft.epage=188&rft.pages=162-188&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.12.034&rft_dat=%3Cproquest_cross%3E2191827271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191827271&rft_id=info:pmid/&rft_els_id=S0021999119300154&rfr_iscdi=true