Value-based Argumentation Frameworks as Neural-symbolic Learning Systems
While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoni...
Gespeichert in:
Veröffentlicht in: | Journal of logic and computation 2005-12, Vol.15 (6), p.1041-1058 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 6 |
container_start_page | 1041 |
container_title | Journal of logic and computation |
container_volume | 15 |
creator | D'Avila Garcez, Artur S. Gabbay, Dov M. Lamb, Luis C. |
description | While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments. |
doi_str_mv | 10.1093/logcom/exi057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219176699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>944384251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-8f80f27c0bb08e2982a26e91064a66ea8ab3c70858ce6aa9be424f3a7ffb57ff3</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKdH78V7XH40SXMcRZ1sqKDO4SV8reno1jYzaXH7761U9PK9l4f35XsQuqTkmhLNJ5Vb566e2H1JhDpCIxpLgbnkq2M0IloIrDRbnaKzEDaEECZpPEKzJVSdxRkE-xFN_bqrbdNCW7omuvVQ2y_ntyGCED3YzkOFw6HOXFXm0cKCb8pmHT0fQmvrcI5OCqiCvfjNMXq9vXlJZ3jxeHefThc45zFtcVIkpGAqJ1lGEst0woBJqymRMUhpIYGM54okIsmtBNCZjVlccFBFkYn-8DG6Gnp33n12NrRm4zrf9JOGUU2VlFr3EB6g3LsQvC3Mzpc1-IOhxPy4MoMrM7j658v-l_0fDH5rpOJKmNnq3cyf0vlbKrhZ8m9Pum97</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219176699</pqid></control><display><type>article</type><title>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>D'Avila Garcez, Artur S. ; Gabbay, Dov M. ; Lamb, Luis C.</creator><creatorcontrib>D'Avila Garcez, Artur S. ; Gabbay, Dov M. ; Lamb, Luis C.</creatorcontrib><description>While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exi057</identifier><identifier>CODEN: JLCOEU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>hybrid systems ; Neural-symbolic systems ; value-based argumentation frameworks</subject><ispartof>Journal of logic and computation, 2005-12, Vol.15 (6), p.1041-1058</ispartof><rights>Copyright Oxford University Press(England) Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-8f80f27c0bb08e2982a26e91064a66ea8ab3c70858ce6aa9be424f3a7ffb57ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>D'Avila Garcez, Artur S.</creatorcontrib><creatorcontrib>Gabbay, Dov M.</creatorcontrib><creatorcontrib>Lamb, Luis C.</creatorcontrib><title>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</title><title>Journal of logic and computation</title><addtitle>J Logic Computation</addtitle><description>While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.</description><subject>hybrid systems</subject><subject>Neural-symbolic systems</subject><subject>value-based argumentation frameworks</subject><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAYhoMoOKdH78V7XH40SXMcRZ1sqKDO4SV8reno1jYzaXH7761U9PK9l4f35XsQuqTkmhLNJ5Vb566e2H1JhDpCIxpLgbnkq2M0IloIrDRbnaKzEDaEECZpPEKzJVSdxRkE-xFN_bqrbdNCW7omuvVQ2y_ntyGCED3YzkOFw6HOXFXm0cKCb8pmHT0fQmvrcI5OCqiCvfjNMXq9vXlJZ3jxeHefThc45zFtcVIkpGAqJ1lGEst0woBJqymRMUhpIYGM54okIsmtBNCZjVlccFBFkYn-8DG6Gnp33n12NrRm4zrf9JOGUU2VlFr3EB6g3LsQvC3Mzpc1-IOhxPy4MoMrM7j658v-l_0fDH5rpOJKmNnq3cyf0vlbKrhZ8m9Pum97</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>D'Avila Garcez, Artur S.</creator><creator>Gabbay, Dov M.</creator><creator>Lamb, Luis C.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200512</creationdate><title>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</title><author>D'Avila Garcez, Artur S. ; Gabbay, Dov M. ; Lamb, Luis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-8f80f27c0bb08e2982a26e91064a66ea8ab3c70858ce6aa9be424f3a7ffb57ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>hybrid systems</topic><topic>Neural-symbolic systems</topic><topic>value-based argumentation frameworks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Avila Garcez, Artur S.</creatorcontrib><creatorcontrib>Gabbay, Dov M.</creatorcontrib><creatorcontrib>Lamb, Luis C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Avila Garcez, Artur S.</au><au>Gabbay, Dov M.</au><au>Lamb, Luis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</atitle><jtitle>Journal of logic and computation</jtitle><addtitle>J Logic Computation</addtitle><date>2005-12</date><risdate>2005</risdate><volume>15</volume><issue>6</issue><spage>1041</spage><epage>1058</epage><pages>1041-1058</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><coden>JLCOEU</coden><abstract>While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/logcom/exi057</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-792X |
ispartof | Journal of logic and computation, 2005-12, Vol.15 (6), p.1041-1058 |
issn | 0955-792X 1465-363X |
language | eng |
recordid | cdi_proquest_journals_219176699 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | hybrid systems Neural-symbolic systems value-based argumentation frameworks |
title | Value-based Argumentation Frameworks as Neural-symbolic Learning Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value-based%20Argumentation%20Frameworks%20as%20Neural-symbolic%20Learning%20Systems&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=D'Avila%20Garcez,%20Artur%20S.&rft.date=2005-12&rft.volume=15&rft.issue=6&rft.spage=1041&rft.epage=1058&rft.pages=1041-1058&rft.issn=0955-792X&rft.eissn=1465-363X&rft.coden=JLCOEU&rft_id=info:doi/10.1093/logcom/exi057&rft_dat=%3Cproquest_cross%3E944384251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219176699&rft_id=info:pmid/&rfr_iscdi=true |