Value-based Argumentation Frameworks as Neural-symbolic Learning Systems

While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2005-12, Vol.15 (6), p.1041-1058
Hauptverfasser: D'Avila Garcez, Artur S., Gabbay, Dov M., Lamb, Luis C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 6
container_start_page 1041
container_title Journal of logic and computation
container_volume 15
creator D'Avila Garcez, Artur S.
Gabbay, Dov M.
Lamb, Luis C.
description While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.
doi_str_mv 10.1093/logcom/exi057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219176699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>944384251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-8f80f27c0bb08e2982a26e91064a66ea8ab3c70858ce6aa9be424f3a7ffb57ff3</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKdH78V7XH40SXMcRZ1sqKDO4SV8reno1jYzaXH7761U9PK9l4f35XsQuqTkmhLNJ5Vb566e2H1JhDpCIxpLgbnkq2M0IloIrDRbnaKzEDaEECZpPEKzJVSdxRkE-xFN_bqrbdNCW7omuvVQ2y_ntyGCED3YzkOFw6HOXFXm0cKCb8pmHT0fQmvrcI5OCqiCvfjNMXq9vXlJZ3jxeHefThc45zFtcVIkpGAqJ1lGEst0woBJqymRMUhpIYGM54okIsmtBNCZjVlccFBFkYn-8DG6Gnp33n12NrRm4zrf9JOGUU2VlFr3EB6g3LsQvC3Mzpc1-IOhxPy4MoMrM7j658v-l_0fDH5rpOJKmNnq3cyf0vlbKrhZ8m9Pum97</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219176699</pqid></control><display><type>article</type><title>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>D'Avila Garcez, Artur S. ; Gabbay, Dov M. ; Lamb, Luis C.</creator><creatorcontrib>D'Avila Garcez, Artur S. ; Gabbay, Dov M. ; Lamb, Luis C.</creatorcontrib><description>While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exi057</identifier><identifier>CODEN: JLCOEU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>hybrid systems ; Neural-symbolic systems ; value-based argumentation frameworks</subject><ispartof>Journal of logic and computation, 2005-12, Vol.15 (6), p.1041-1058</ispartof><rights>Copyright Oxford University Press(England) Dec 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-8f80f27c0bb08e2982a26e91064a66ea8ab3c70858ce6aa9be424f3a7ffb57ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>D'Avila Garcez, Artur S.</creatorcontrib><creatorcontrib>Gabbay, Dov M.</creatorcontrib><creatorcontrib>Lamb, Luis C.</creatorcontrib><title>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</title><title>Journal of logic and computation</title><addtitle>J Logic Computation</addtitle><description>While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.</description><subject>hybrid systems</subject><subject>Neural-symbolic systems</subject><subject>value-based argumentation frameworks</subject><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAYhoMoOKdH78V7XH40SXMcRZ1sqKDO4SV8reno1jYzaXH7761U9PK9l4f35XsQuqTkmhLNJ5Vb566e2H1JhDpCIxpLgbnkq2M0IloIrDRbnaKzEDaEECZpPEKzJVSdxRkE-xFN_bqrbdNCW7omuvVQ2y_ntyGCED3YzkOFw6HOXFXm0cKCb8pmHT0fQmvrcI5OCqiCvfjNMXq9vXlJZ3jxeHefThc45zFtcVIkpGAqJ1lGEst0woBJqymRMUhpIYGM54okIsmtBNCZjVlccFBFkYn-8DG6Gnp33n12NrRm4zrf9JOGUU2VlFr3EB6g3LsQvC3Mzpc1-IOhxPy4MoMrM7j658v-l_0fDH5rpOJKmNnq3cyf0vlbKrhZ8m9Pum97</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>D'Avila Garcez, Artur S.</creator><creator>Gabbay, Dov M.</creator><creator>Lamb, Luis C.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200512</creationdate><title>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</title><author>D'Avila Garcez, Artur S. ; Gabbay, Dov M. ; Lamb, Luis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-8f80f27c0bb08e2982a26e91064a66ea8ab3c70858ce6aa9be424f3a7ffb57ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>hybrid systems</topic><topic>Neural-symbolic systems</topic><topic>value-based argumentation frameworks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Avila Garcez, Artur S.</creatorcontrib><creatorcontrib>Gabbay, Dov M.</creatorcontrib><creatorcontrib>Lamb, Luis C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Avila Garcez, Artur S.</au><au>Gabbay, Dov M.</au><au>Lamb, Luis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value-based Argumentation Frameworks as Neural-symbolic Learning Systems</atitle><jtitle>Journal of logic and computation</jtitle><addtitle>J Logic Computation</addtitle><date>2005-12</date><risdate>2005</risdate><volume>15</volume><issue>6</issue><spage>1041</spage><epage>1058</epage><pages>1041-1058</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><coden>JLCOEU</coden><abstract>While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/logcom/exi057</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2005-12, Vol.15 (6), p.1041-1058
issn 0955-792X
1465-363X
language eng
recordid cdi_proquest_journals_219176699
source Oxford University Press Journals All Titles (1996-Current)
subjects hybrid systems
Neural-symbolic systems
value-based argumentation frameworks
title Value-based Argumentation Frameworks as Neural-symbolic Learning Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value-based%20Argumentation%20Frameworks%20as%20Neural-symbolic%20Learning%20Systems&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=D'Avila%20Garcez,%20Artur%20S.&rft.date=2005-12&rft.volume=15&rft.issue=6&rft.spage=1041&rft.epage=1058&rft.pages=1041-1058&rft.issn=0955-792X&rft.eissn=1465-363X&rft.coden=JLCOEU&rft_id=info:doi/10.1093/logcom/exi057&rft_dat=%3Cproquest_cross%3E944384251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219176699&rft_id=info:pmid/&rfr_iscdi=true