The effectiveness of mathematics in physics of the unknown
If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfect...
Gespeichert in:
Veröffentlicht in: | Synthese (Dordrecht) 2019-03, Vol.196 (3), p.973-989 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 3 |
container_start_page | 973 |
container_title | Synthese (Dordrecht) |
container_volume | 196 |
creator | Grinbaum, Alexei |
description | If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information. |
doi_str_mv | 10.1007/s11229-017-1490-0 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2191754203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45096386</jstor_id><sourcerecordid>45096386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwIOw4Dk6k-wmu96k-A8KXuo5JNnEbrXZmmyVfntTVvTmZWaYee8N_Ag5R7hCAHmdEBlrKKCkWDZA4YBMsJKcQiPKQzIB4A2VdSWPyUlKKwBEUcKE3CyWrnDeOzt0ny64lIreF2s9LF0unU1FF4rNcpf2Y77kfbENb6H_CqfkyOv35M5--pS83N8tZo90_vzwNLudU8trHKhoDEjPawsIGhjWrdVGIlpujbEWvDEtk963xukKWym90AyEZG0rSm8En5LLMXcT-4-tS4Na9dsY8kvFsEFZlQx4VuGosrFPKTqvNrFb67hTCGqPSI2IVEak9ogUZA8bPSlrw6uLf8n_mS5G0yoNffz9UlaZNK8F_wZGTXLX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191754203</pqid></control><display><type>article</type><title>The effectiveness of mathematics in physics of the unknown</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><creator>Grinbaum, Alexei</creator><creatorcontrib>Grinbaum, Alexei</creatorcontrib><description>If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-017-1490-0</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Education ; Epistemology ; Logic ; Mathematics ; Metaphysics ; Philosophy ; Philosophy of Language ; Philosophy of Science ; Physics ; Quantum field theory ; REGULAR ARTICLES ; Unexplained phenomena</subject><ispartof>Synthese (Dordrecht), 2019-03, Vol.196 (3), p.973-989</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2017</rights><rights>Synthese is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</citedby><cites>FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</cites><orcidid>0000-0002-7484-1553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45096386$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45096386$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Grinbaum, Alexei</creatorcontrib><title>The effectiveness of mathematics in physics of the unknown</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.</description><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Metaphysics</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Quantum field theory</subject><subject>REGULAR ARTICLES</subject><subject>Unexplained phenomena</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfwIOw4Dk6k-wmu96k-A8KXuo5JNnEbrXZmmyVfntTVvTmZWaYee8N_Ag5R7hCAHmdEBlrKKCkWDZA4YBMsJKcQiPKQzIB4A2VdSWPyUlKKwBEUcKE3CyWrnDeOzt0ny64lIreF2s9LF0unU1FF4rNcpf2Y77kfbENb6H_CqfkyOv35M5--pS83N8tZo90_vzwNLudU8trHKhoDEjPawsIGhjWrdVGIlpujbEWvDEtk963xukKWym90AyEZG0rSm8En5LLMXcT-4-tS4Na9dsY8kvFsEFZlQx4VuGosrFPKTqvNrFb67hTCGqPSI2IVEak9ogUZA8bPSlrw6uLf8n_mS5G0yoNffz9UlaZNK8F_wZGTXLX</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Grinbaum, Alexei</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7484-1553</orcidid></search><sort><creationdate>20190301</creationdate><title>The effectiveness of mathematics in physics of the unknown</title><author>Grinbaum, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Metaphysics</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Quantum field theory</topic><topic>REGULAR ARTICLES</topic><topic>Unexplained phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinbaum, Alexei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design & Architecture Collection</collection><collection>One Literature (ProQuest)</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinbaum, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effectiveness of mathematics in physics of the unknown</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>196</volume><issue>3</issue><spage>973</spage><epage>989</epage><pages>973-989</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11229-017-1490-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7484-1553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-7857 |
ispartof | Synthese (Dordrecht), 2019-03, Vol.196 (3), p.973-989 |
issn | 0039-7857 1573-0964 |
language | eng |
recordid | cdi_proquest_journals_2191754203 |
source | Jstor Complete Legacy; SpringerLink Journals |
subjects | Education Epistemology Logic Mathematics Metaphysics Philosophy Philosophy of Language Philosophy of Science Physics Quantum field theory REGULAR ARTICLES Unexplained phenomena |
title | The effectiveness of mathematics in physics of the unknown |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effectiveness%20of%20mathematics%20in%20physics%20of%20the%20unknown&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Grinbaum,%20Alexei&rft.date=2019-03-01&rft.volume=196&rft.issue=3&rft.spage=973&rft.epage=989&rft.pages=973-989&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-017-1490-0&rft_dat=%3Cjstor_proqu%3E45096386%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191754203&rft_id=info:pmid/&rft_jstor_id=45096386&rfr_iscdi=true |