The effectiveness of mathematics in physics of the unknown

If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Synthese (Dordrecht) 2019-03, Vol.196 (3), p.973-989
1. Verfasser: Grinbaum, Alexei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 3
container_start_page 973
container_title Synthese (Dordrecht)
container_volume 196
creator Grinbaum, Alexei
description If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.
doi_str_mv 10.1007/s11229-017-1490-0
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2191754203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45096386</jstor_id><sourcerecordid>45096386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwIOw4Dk6k-wmu96k-A8KXuo5JNnEbrXZmmyVfntTVvTmZWaYee8N_Ag5R7hCAHmdEBlrKKCkWDZA4YBMsJKcQiPKQzIB4A2VdSWPyUlKKwBEUcKE3CyWrnDeOzt0ny64lIreF2s9LF0unU1FF4rNcpf2Y77kfbENb6H_CqfkyOv35M5--pS83N8tZo90_vzwNLudU8trHKhoDEjPawsIGhjWrdVGIlpujbEWvDEtk963xukKWym90AyEZG0rSm8En5LLMXcT-4-tS4Na9dsY8kvFsEFZlQx4VuGosrFPKTqvNrFb67hTCGqPSI2IVEak9ogUZA8bPSlrw6uLf8n_mS5G0yoNffz9UlaZNK8F_wZGTXLX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191754203</pqid></control><display><type>article</type><title>The effectiveness of mathematics in physics of the unknown</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals</source><creator>Grinbaum, Alexei</creator><creatorcontrib>Grinbaum, Alexei</creatorcontrib><description>If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.</description><identifier>ISSN: 0039-7857</identifier><identifier>EISSN: 1573-0964</identifier><identifier>DOI: 10.1007/s11229-017-1490-0</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Education ; Epistemology ; Logic ; Mathematics ; Metaphysics ; Philosophy ; Philosophy of Language ; Philosophy of Science ; Physics ; Quantum field theory ; REGULAR ARTICLES ; Unexplained phenomena</subject><ispartof>Synthese (Dordrecht), 2019-03, Vol.196 (3), p.973-989</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2017</rights><rights>Synthese is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</citedby><cites>FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</cites><orcidid>0000-0002-7484-1553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45096386$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45096386$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids></links><search><creatorcontrib>Grinbaum, Alexei</creatorcontrib><title>The effectiveness of mathematics in physics of the unknown</title><title>Synthese (Dordrecht)</title><addtitle>Synthese</addtitle><description>If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.</description><subject>Education</subject><subject>Epistemology</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Metaphysics</subject><subject>Philosophy</subject><subject>Philosophy of Language</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Quantum field theory</subject><subject>REGULAR ARTICLES</subject><subject>Unexplained phenomena</subject><issn>0039-7857</issn><issn>1573-0964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>AVQMV</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfwIOw4Dk6k-wmu96k-A8KXuo5JNnEbrXZmmyVfntTVvTmZWaYee8N_Ag5R7hCAHmdEBlrKKCkWDZA4YBMsJKcQiPKQzIB4A2VdSWPyUlKKwBEUcKE3CyWrnDeOzt0ny64lIreF2s9LF0unU1FF4rNcpf2Y77kfbENb6H_CqfkyOv35M5--pS83N8tZo90_vzwNLudU8trHKhoDEjPawsIGhjWrdVGIlpujbEWvDEtk963xukKWym90AyEZG0rSm8En5LLMXcT-4-tS4Na9dsY8kvFsEFZlQx4VuGosrFPKTqvNrFb67hTCGqPSI2IVEak9ogUZA8bPSlrw6uLf8n_mS5G0yoNffz9UlaZNK8F_wZGTXLX</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Grinbaum, Alexei</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7484-1553</orcidid></search><sort><creationdate>20190301</creationdate><title>The effectiveness of mathematics in physics of the unknown</title><author>Grinbaum, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-69b07f38c010a0218dcab711c3cbbcc0fbbd27ffdbea51d77f6a20672dd64fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Education</topic><topic>Epistemology</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Metaphysics</topic><topic>Philosophy</topic><topic>Philosophy of Language</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Quantum field theory</topic><topic>REGULAR ARTICLES</topic><topic>Unexplained phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grinbaum, Alexei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>One Literature (ProQuest)</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Synthese (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grinbaum, Alexei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effectiveness of mathematics in physics of the unknown</atitle><jtitle>Synthese (Dordrecht)</jtitle><stitle>Synthese</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>196</volume><issue>3</issue><spage>973</spage><epage>989</epage><pages>973-989</pages><issn>0039-7857</issn><eissn>1573-0964</eissn><abstract>If physics is a science that unveils the fundamental laws of nature, then the appearance of mathematical concepts in its language can be surprising or even mysterious. This was Eugene Wigner's argument in 1960.1 show that another approach to physical theory accommodates mathematics in a perfectly reasonable way. To explore unknown processes or phenomena, one builds a theory from fundamental principles, employing them as constraints within a general mathematical framework. The rise of such theories of the unknown, which I call blackbox models, drives home the unsurprising effectiveness of mathematics. I illustrate it on the examples of Einstein's principle theories, the S-matrix approach in quantum field theory, effective field theories, and device-independent approaches in quantum information.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11229-017-1490-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7484-1553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-7857
ispartof Synthese (Dordrecht), 2019-03, Vol.196 (3), p.973-989
issn 0039-7857
1573-0964
language eng
recordid cdi_proquest_journals_2191754203
source Jstor Complete Legacy; SpringerLink Journals
subjects Education
Epistemology
Logic
Mathematics
Metaphysics
Philosophy
Philosophy of Language
Philosophy of Science
Physics
Quantum field theory
REGULAR ARTICLES
Unexplained phenomena
title The effectiveness of mathematics in physics of the unknown
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effectiveness%20of%20mathematics%20in%20physics%20of%20the%20unknown&rft.jtitle=Synthese%20(Dordrecht)&rft.au=Grinbaum,%20Alexei&rft.date=2019-03-01&rft.volume=196&rft.issue=3&rft.spage=973&rft.epage=989&rft.pages=973-989&rft.issn=0039-7857&rft.eissn=1573-0964&rft_id=info:doi/10.1007/s11229-017-1490-0&rft_dat=%3Cjstor_proqu%3E45096386%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191754203&rft_id=info:pmid/&rft_jstor_id=45096386&rfr_iscdi=true