Effect of target material on relativistic electron beam transport
A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and t...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2019-03, Vol.26 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 26 |
creator | Chawla, S. Bailly-Grandvaux, M. McLean, H. S. Patel, P. K. Wei, M. S. Beg, F. N. |
description | A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions. |
doi_str_mv | 10.1063/1.5087895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2191584726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191584726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbLwjcYdKUwNffLspR6gYIbBXchZhKdMp2MSVrw7c0wBfeucggf5_z8AFwhOEeQk3s0Z1AKqdgRmCEoVS24oMfjLGDNOX0_BWcpbSCElDM5A4uV987mKvgqm_jpcrU12cXWdFXoq-g6k9t9m3JrK9cVGMvvhzPbKkfTpyHEfAFOvOmSuzy85-DtYfW6fKrXL4_Py8W6tpSxXCvimcdEGsa5Yk41DURKEiUdJgQ1iBLhcaFIWcotbTyzUihCuFW-cZSTc3A97Q0ljU62zc5-2dD3JZVGjGKBZUE3Expi-N65lPUm7GJfcmmMFGKSCjyuup2UjSGl6LweYrs18UcjqMcaNdKHGou9m-x4sZQR-v_hfYh_UA-NJ7_RlH7_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191584726</pqid></control><display><type>article</type><title>Effect of target material on relativistic electron beam transport</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chawla, S. ; Bailly-Grandvaux, M. ; McLean, H. S. ; Patel, P. K. ; Wei, M. S. ; Beg, F. N.</creator><creatorcontrib>Chawla, S. ; Bailly-Grandvaux, M. ; McLean, H. S. ; Patel, P. K. ; Wei, M. S. ; Beg, F. N. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5087895</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Aluminum ; Atomic properties ; Collimation ; Copper ; Dependence ; Electrical resistivity ; Energy dissipation ; Evolution ; Ionization ; Laser beams ; Magnetic fields ; Particle in cell technique ; Plasma physics ; Relativistic electron beams ; Silver ; Transport</subject><ispartof>Physics of plasmas, 2019-03, Vol.26 (3)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</citedby><cites>FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</cites><orcidid>0000-0001-7529-4013 ; 0000-0002-1884-9980 ; 0000-0001-5679-2172 ; 0000000218849980 ; 0000000175294013 ; 0000000156792172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5087895$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chawla, S.</creatorcontrib><creatorcontrib>Bailly-Grandvaux, M.</creatorcontrib><creatorcontrib>McLean, H. S.</creatorcontrib><creatorcontrib>Patel, P. K.</creatorcontrib><creatorcontrib>Wei, M. S.</creatorcontrib><creatorcontrib>Beg, F. N.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Effect of target material on relativistic electron beam transport</title><title>Physics of plasmas</title><description>A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Aluminum</subject><subject>Atomic properties</subject><subject>Collimation</subject><subject>Copper</subject><subject>Dependence</subject><subject>Electrical resistivity</subject><subject>Energy dissipation</subject><subject>Evolution</subject><subject>Ionization</subject><subject>Laser beams</subject><subject>Magnetic fields</subject><subject>Particle in cell technique</subject><subject>Plasma physics</subject><subject>Relativistic electron beams</subject><subject>Silver</subject><subject>Transport</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbLwjcYdKUwNffLspR6gYIbBXchZhKdMp2MSVrw7c0wBfeucggf5_z8AFwhOEeQk3s0Z1AKqdgRmCEoVS24oMfjLGDNOX0_BWcpbSCElDM5A4uV987mKvgqm_jpcrU12cXWdFXoq-g6k9t9m3JrK9cVGMvvhzPbKkfTpyHEfAFOvOmSuzy85-DtYfW6fKrXL4_Py8W6tpSxXCvimcdEGsa5Yk41DURKEiUdJgQ1iBLhcaFIWcotbTyzUihCuFW-cZSTc3A97Q0ljU62zc5-2dD3JZVGjGKBZUE3Expi-N65lPUm7GJfcmmMFGKSCjyuup2UjSGl6LweYrs18UcjqMcaNdKHGou9m-x4sZQR-v_hfYh_UA-NJ7_RlH7_</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Chawla, S.</creator><creator>Bailly-Grandvaux, M.</creator><creator>McLean, H. S.</creator><creator>Patel, P. K.</creator><creator>Wei, M. S.</creator><creator>Beg, F. N.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7529-4013</orcidid><orcidid>https://orcid.org/0000-0002-1884-9980</orcidid><orcidid>https://orcid.org/0000-0001-5679-2172</orcidid><orcidid>https://orcid.org/0000000218849980</orcidid><orcidid>https://orcid.org/0000000175294013</orcidid><orcidid>https://orcid.org/0000000156792172</orcidid></search><sort><creationdate>20190301</creationdate><title>Effect of target material on relativistic electron beam transport</title><author>Chawla, S. ; Bailly-Grandvaux, M. ; McLean, H. S. ; Patel, P. K. ; Wei, M. S. ; Beg, F. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Aluminum</topic><topic>Atomic properties</topic><topic>Collimation</topic><topic>Copper</topic><topic>Dependence</topic><topic>Electrical resistivity</topic><topic>Energy dissipation</topic><topic>Evolution</topic><topic>Ionization</topic><topic>Laser beams</topic><topic>Magnetic fields</topic><topic>Particle in cell technique</topic><topic>Plasma physics</topic><topic>Relativistic electron beams</topic><topic>Silver</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chawla, S.</creatorcontrib><creatorcontrib>Bailly-Grandvaux, M.</creatorcontrib><creatorcontrib>McLean, H. S.</creatorcontrib><creatorcontrib>Patel, P. K.</creatorcontrib><creatorcontrib>Wei, M. S.</creatorcontrib><creatorcontrib>Beg, F. N.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chawla, S.</au><au>Bailly-Grandvaux, M.</au><au>McLean, H. S.</au><au>Patel, P. K.</au><au>Wei, M. S.</au><au>Beg, F. N.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of target material on relativistic electron beam transport</atitle><jtitle>Physics of plasmas</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5087895</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7529-4013</orcidid><orcidid>https://orcid.org/0000-0002-1884-9980</orcidid><orcidid>https://orcid.org/0000-0001-5679-2172</orcidid><orcidid>https://orcid.org/0000000218849980</orcidid><orcidid>https://orcid.org/0000000175294013</orcidid><orcidid>https://orcid.org/0000000156792172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2019-03, Vol.26 (3) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2191584726 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Aluminum Atomic properties Collimation Copper Dependence Electrical resistivity Energy dissipation Evolution Ionization Laser beams Magnetic fields Particle in cell technique Plasma physics Relativistic electron beams Silver Transport |
title | Effect of target material on relativistic electron beam transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20target%20material%20on%20relativistic%20electron%20beam%20transport&rft.jtitle=Physics%20of%20plasmas&rft.au=Chawla,%20S.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-03-01&rft.volume=26&rft.issue=3&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5087895&rft_dat=%3Cproquest_scita%3E2191584726%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191584726&rft_id=info:pmid/&rfr_iscdi=true |