Effect of target material on relativistic electron beam transport

A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2019-03, Vol.26 (3)
Hauptverfasser: Chawla, S., Bailly-Grandvaux, M., McLean, H. S., Patel, P. K., Wei, M. S., Beg, F. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of plasmas
container_volume 26
creator Chawla, S.
Bailly-Grandvaux, M.
McLean, H. S.
Patel, P. K.
Wei, M. S.
Beg, F. N.
description A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.
doi_str_mv 10.1063/1.5087895
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2191584726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191584726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbLwjcYdKUwNffLspR6gYIbBXchZhKdMp2MSVrw7c0wBfeucggf5_z8AFwhOEeQk3s0Z1AKqdgRmCEoVS24oMfjLGDNOX0_BWcpbSCElDM5A4uV987mKvgqm_jpcrU12cXWdFXoq-g6k9t9m3JrK9cVGMvvhzPbKkfTpyHEfAFOvOmSuzy85-DtYfW6fKrXL4_Py8W6tpSxXCvimcdEGsa5Yk41DURKEiUdJgQ1iBLhcaFIWcotbTyzUihCuFW-cZSTc3A97Q0ljU62zc5-2dD3JZVGjGKBZUE3Expi-N65lPUm7GJfcmmMFGKSCjyuup2UjSGl6LweYrs18UcjqMcaNdKHGou9m-x4sZQR-v_hfYh_UA-NJ7_RlH7_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191584726</pqid></control><display><type>article</type><title>Effect of target material on relativistic electron beam transport</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chawla, S. ; Bailly-Grandvaux, M. ; McLean, H. S. ; Patel, P. K. ; Wei, M. S. ; Beg, F. N.</creator><creatorcontrib>Chawla, S. ; Bailly-Grandvaux, M. ; McLean, H. S. ; Patel, P. K. ; Wei, M. S. ; Beg, F. N. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5087895</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Aluminum ; Atomic properties ; Collimation ; Copper ; Dependence ; Electrical resistivity ; Energy dissipation ; Evolution ; Ionization ; Laser beams ; Magnetic fields ; Particle in cell technique ; Plasma physics ; Relativistic electron beams ; Silver ; Transport</subject><ispartof>Physics of plasmas, 2019-03, Vol.26 (3)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</citedby><cites>FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</cites><orcidid>0000-0001-7529-4013 ; 0000-0002-1884-9980 ; 0000-0001-5679-2172 ; 0000000218849980 ; 0000000175294013 ; 0000000156792172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5087895$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542728$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chawla, S.</creatorcontrib><creatorcontrib>Bailly-Grandvaux, M.</creatorcontrib><creatorcontrib>McLean, H. S.</creatorcontrib><creatorcontrib>Patel, P. K.</creatorcontrib><creatorcontrib>Wei, M. S.</creatorcontrib><creatorcontrib>Beg, F. N.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Effect of target material on relativistic electron beam transport</title><title>Physics of plasmas</title><description>A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Aluminum</subject><subject>Atomic properties</subject><subject>Collimation</subject><subject>Copper</subject><subject>Dependence</subject><subject>Electrical resistivity</subject><subject>Energy dissipation</subject><subject>Evolution</subject><subject>Ionization</subject><subject>Laser beams</subject><subject>Magnetic fields</subject><subject>Particle in cell technique</subject><subject>Plasma physics</subject><subject>Relativistic electron beams</subject><subject>Silver</subject><subject>Transport</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbLwjcYdKUwNffLspR6gYIbBXchZhKdMp2MSVrw7c0wBfeucggf5_z8AFwhOEeQk3s0Z1AKqdgRmCEoVS24oMfjLGDNOX0_BWcpbSCElDM5A4uV987mKvgqm_jpcrU12cXWdFXoq-g6k9t9m3JrK9cVGMvvhzPbKkfTpyHEfAFOvOmSuzy85-DtYfW6fKrXL4_Py8W6tpSxXCvimcdEGsa5Yk41DURKEiUdJgQ1iBLhcaFIWcotbTyzUihCuFW-cZSTc3A97Q0ljU62zc5-2dD3JZVGjGKBZUE3Expi-N65lPUm7GJfcmmMFGKSCjyuup2UjSGl6LweYrs18UcjqMcaNdKHGou9m-x4sZQR-v_hfYh_UA-NJ7_RlH7_</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Chawla, S.</creator><creator>Bailly-Grandvaux, M.</creator><creator>McLean, H. S.</creator><creator>Patel, P. K.</creator><creator>Wei, M. S.</creator><creator>Beg, F. N.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7529-4013</orcidid><orcidid>https://orcid.org/0000-0002-1884-9980</orcidid><orcidid>https://orcid.org/0000-0001-5679-2172</orcidid><orcidid>https://orcid.org/0000000218849980</orcidid><orcidid>https://orcid.org/0000000175294013</orcidid><orcidid>https://orcid.org/0000000156792172</orcidid></search><sort><creationdate>20190301</creationdate><title>Effect of target material on relativistic electron beam transport</title><author>Chawla, S. ; Bailly-Grandvaux, M. ; McLean, H. S. ; Patel, P. K. ; Wei, M. S. ; Beg, F. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-93f5f238a56695e9dd0198398e2331d1437f2c4519c46c4df5c879336c9fde463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Aluminum</topic><topic>Atomic properties</topic><topic>Collimation</topic><topic>Copper</topic><topic>Dependence</topic><topic>Electrical resistivity</topic><topic>Energy dissipation</topic><topic>Evolution</topic><topic>Ionization</topic><topic>Laser beams</topic><topic>Magnetic fields</topic><topic>Particle in cell technique</topic><topic>Plasma physics</topic><topic>Relativistic electron beams</topic><topic>Silver</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chawla, S.</creatorcontrib><creatorcontrib>Bailly-Grandvaux, M.</creatorcontrib><creatorcontrib>McLean, H. S.</creatorcontrib><creatorcontrib>Patel, P. K.</creatorcontrib><creatorcontrib>Wei, M. S.</creatorcontrib><creatorcontrib>Beg, F. N.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chawla, S.</au><au>Bailly-Grandvaux, M.</au><au>McLean, H. S.</au><au>Patel, P. K.</au><au>Wei, M. S.</au><au>Beg, F. N.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of target material on relativistic electron beam transport</atitle><jtitle>Physics of plasmas</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>26</volume><issue>3</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A computational study using the hybrid-particle-in-cell code ZUMA investigated the transport of a fast electron beam (55 J, 1013 A/cm2) produced at Titan laser conditions (λ = 1 μm, 0.7 ps, 1020 W/cm2) in materials ranging from the low to high atomic number, specifically fast electron stopping and the evolution of resistive magnetic fields. Fast electron energy loss due to stopping was similar in Al, Cu, and Ag (21%–27%) and much higher in Au (54%). Ohmic stopping was found to dominate over collisional stopping in all materials except Au. Resistive magnetic field growth was shown to depend on the dynamic competition between the resistivity and resistivity gradient source terms in Faraday's Law. Moreover, the dependence of these terms on the background material ionization state and temperature evolution is presented. The advantages of mid-Z materials for collimation are discussed, as well as the implications for collimation at fast ignition conditions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5087895</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7529-4013</orcidid><orcidid>https://orcid.org/0000-0002-1884-9980</orcidid><orcidid>https://orcid.org/0000-0001-5679-2172</orcidid><orcidid>https://orcid.org/0000000218849980</orcidid><orcidid>https://orcid.org/0000000175294013</orcidid><orcidid>https://orcid.org/0000000156792172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-03, Vol.26 (3)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2191584726
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Aluminum
Atomic properties
Collimation
Copper
Dependence
Electrical resistivity
Energy dissipation
Evolution
Ionization
Laser beams
Magnetic fields
Particle in cell technique
Plasma physics
Relativistic electron beams
Silver
Transport
title Effect of target material on relativistic electron beam transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20target%20material%20on%20relativistic%20electron%20beam%20transport&rft.jtitle=Physics%20of%20plasmas&rft.au=Chawla,%20S.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-03-01&rft.volume=26&rft.issue=3&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5087895&rft_dat=%3Cproquest_scita%3E2191584726%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191584726&rft_id=info:pmid/&rfr_iscdi=true