Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity

Boron carbide-reinforced copper metal matrix composites have been the subject of broad research because of their good mechanical, electrical and tribological properties. In the present research, Cu–B 4 C composites containing 5, 10 and 15 wt% of B 4 C have been fabricated by cold powder compaction f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Indian Institute of Metals 2019-03, Vol.72 (3), p.673-684
Hauptverfasser: Prajapati, P. K., Chaira, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 3
container_start_page 673
container_title Transactions of the Indian Institute of Metals
container_volume 72
creator Prajapati, P. K.
Chaira, D.
description Boron carbide-reinforced copper metal matrix composites have been the subject of broad research because of their good mechanical, electrical and tribological properties. In the present research, Cu–B 4 C composites containing 5, 10 and 15 wt% of B 4 C have been fabricated by cold powder compaction followed by conventional sintering at 900 °C for 1 h under argon atmosphere. The fabricated composites are characterized by X-ray diffraction, optical microscopy and field emission scanning electron microscopy (FESEM). From microscopic study, we have found that B 4 C particles are homogeneously distributed in the copper matrix and there is good compatibility between B 4 C and Cu. The microstructure analyzed by FESEM shows that the interface between Cu matrix and B 4 C is clean and no interfacial product is formed. The effect of B 4 C particles and their weight fraction on microstructure, mechanical properties and electrical conductivity is also studied. The Vickers hardness value increases with increasing weight percentage of boron carbide in Cu matrix. The hardness value increases from 38 VHN for pure copper to 79 VHN for Cu-15 wt% B 4 C metal matrix composite (MMC). A maximum relative density of 82% is achieved for Cu-5 wt% B 4 C MMC. The maximum compressive strength of 315 MPa is achieved for Cu-15 wt% B 4 C MMC. The electrical conductivity of pure Cu is found to be 4.5 × 10 6  S/m, and it decreases to 1.92 × 10 6 , 0.75 × 10 6 and 0.32 × 10 6  S/m for Cu-5 wt% B 4 C, Cu-10 wt% B 4 C and Cu-15 wt% B 4 C MMCs, respectively.
doi_str_mv 10.1007/s12666-018-1518-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191385579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191385579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-6570d9c6b0cf7b01b73c8174b1e0e306c6faa4277aff67d5ce456774cdfb4e6c3</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhqOqSFDoA3Cz1GsDthPbCbc22m2RWMGBni3HsXeNQryMnZbtiXfgNfpUPAnOphInLrY1_r9_ZvRn2SnBZwRjcR4I5ZznmFQ5YemgH7IjXAuWE16yj_s3zWlF2GH2KYQ7jIuaFsVR9m-pWnBaRecHpIYONRsFSkcD7u9c9BY148vT8_eyQSsTVY9WKoJ7RI2_3_rgokHtDt34P52BWdCPsN5doIW1RseJn9DktHIafIgw6jiC-ZrEeqOG1LxHN-C3BqIzYT_Eok8k7H8aP3QJcL9d3J1kB1b1wXz-fx9nv5aL2-ZnfnX947L5dpVrWhUx50zgrta8xdqKFpNWFLoiomyJwabAXHOrVEmFUNZy0TFtSsaFKHVn29JwXRxnX2bfLfiH0YQo7_wIQ2opKalJUTEm6qQis2raKoCxcgvuXsFOEiynUOQcikyhyCkUSRNDZyYk7bA28Ob8PvQKg9uTFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191385579</pqid></control><display><type>article</type><title>Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Prajapati, P. K. ; Chaira, D.</creator><creatorcontrib>Prajapati, P. K. ; Chaira, D.</creatorcontrib><description>Boron carbide-reinforced copper metal matrix composites have been the subject of broad research because of their good mechanical, electrical and tribological properties. In the present research, Cu–B 4 C composites containing 5, 10 and 15 wt% of B 4 C have been fabricated by cold powder compaction followed by conventional sintering at 900 °C for 1 h under argon atmosphere. The fabricated composites are characterized by X-ray diffraction, optical microscopy and field emission scanning electron microscopy (FESEM). From microscopic study, we have found that B 4 C particles are homogeneously distributed in the copper matrix and there is good compatibility between B 4 C and Cu. The microstructure analyzed by FESEM shows that the interface between Cu matrix and B 4 C is clean and no interfacial product is formed. The effect of B 4 C particles and their weight fraction on microstructure, mechanical properties and electrical conductivity is also studied. The Vickers hardness value increases with increasing weight percentage of boron carbide in Cu matrix. The hardness value increases from 38 VHN for pure copper to 79 VHN for Cu-15 wt% B 4 C metal matrix composite (MMC). A maximum relative density of 82% is achieved for Cu-5 wt% B 4 C MMC. The maximum compressive strength of 315 MPa is achieved for Cu-15 wt% B 4 C MMC. The electrical conductivity of pure Cu is found to be 4.5 × 10 6  S/m, and it decreases to 1.92 × 10 6 , 0.75 × 10 6 and 0.32 × 10 6  S/m for Cu-5 wt% B 4 C, Cu-10 wt% B 4 C and Cu-15 wt% B 4 C MMCs, respectively.</description><identifier>ISSN: 0972-2815</identifier><identifier>EISSN: 0975-1645</identifier><identifier>DOI: 10.1007/s12666-018-1518-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Argon ; Boron carbide ; Chemistry and Materials Science ; Cold pressing ; Compressive strength ; Copper ; Corrosion and Coatings ; Densification ; Diamond pyramid hardness ; Electrical resistivity ; Emission analysis ; Field emission microscopy ; Materials Science ; Mechanical properties ; Metal matrix composites ; Metallic Materials ; Microscopy ; Microstructure ; Optical microscopy ; Powder metallurgy ; Scanning electron microscopy ; Sintering (powder metallurgy) ; Technical Paper ; Tribology ; Weight ; X-ray diffraction</subject><ispartof>Transactions of the Indian Institute of Metals, 2019-03, Vol.72 (3), p.673-684</ispartof><rights>The Indian Institute of Metals - IIM 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-6570d9c6b0cf7b01b73c8174b1e0e306c6faa4277aff67d5ce456774cdfb4e6c3</citedby><cites>FETCH-LOGICAL-c283t-6570d9c6b0cf7b01b73c8174b1e0e306c6faa4277aff67d5ce456774cdfb4e6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12666-018-1518-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12666-018-1518-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Prajapati, P. K.</creatorcontrib><creatorcontrib>Chaira, D.</creatorcontrib><title>Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity</title><title>Transactions of the Indian Institute of Metals</title><addtitle>Trans Indian Inst Met</addtitle><description>Boron carbide-reinforced copper metal matrix composites have been the subject of broad research because of their good mechanical, electrical and tribological properties. In the present research, Cu–B 4 C composites containing 5, 10 and 15 wt% of B 4 C have been fabricated by cold powder compaction followed by conventional sintering at 900 °C for 1 h under argon atmosphere. The fabricated composites are characterized by X-ray diffraction, optical microscopy and field emission scanning electron microscopy (FESEM). From microscopic study, we have found that B 4 C particles are homogeneously distributed in the copper matrix and there is good compatibility between B 4 C and Cu. The microstructure analyzed by FESEM shows that the interface between Cu matrix and B 4 C is clean and no interfacial product is formed. The effect of B 4 C particles and their weight fraction on microstructure, mechanical properties and electrical conductivity is also studied. The Vickers hardness value increases with increasing weight percentage of boron carbide in Cu matrix. The hardness value increases from 38 VHN for pure copper to 79 VHN for Cu-15 wt% B 4 C metal matrix composite (MMC). A maximum relative density of 82% is achieved for Cu-5 wt% B 4 C MMC. The maximum compressive strength of 315 MPa is achieved for Cu-15 wt% B 4 C MMC. The electrical conductivity of pure Cu is found to be 4.5 × 10 6  S/m, and it decreases to 1.92 × 10 6 , 0.75 × 10 6 and 0.32 × 10 6  S/m for Cu-5 wt% B 4 C, Cu-10 wt% B 4 C and Cu-15 wt% B 4 C MMCs, respectively.</description><subject>Argon</subject><subject>Boron carbide</subject><subject>Chemistry and Materials Science</subject><subject>Cold pressing</subject><subject>Compressive strength</subject><subject>Copper</subject><subject>Corrosion and Coatings</subject><subject>Densification</subject><subject>Diamond pyramid hardness</subject><subject>Electrical resistivity</subject><subject>Emission analysis</subject><subject>Field emission microscopy</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal matrix composites</subject><subject>Metallic Materials</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Optical microscopy</subject><subject>Powder metallurgy</subject><subject>Scanning electron microscopy</subject><subject>Sintering (powder metallurgy)</subject><subject>Technical Paper</subject><subject>Tribology</subject><subject>Weight</subject><subject>X-ray diffraction</subject><issn>0972-2815</issn><issn>0975-1645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFO3DAQhqOqSFDoA3Cz1GsDthPbCbc22m2RWMGBni3HsXeNQryMnZbtiXfgNfpUPAnOphInLrY1_r9_ZvRn2SnBZwRjcR4I5ZznmFQ5YemgH7IjXAuWE16yj_s3zWlF2GH2KYQ7jIuaFsVR9m-pWnBaRecHpIYONRsFSkcD7u9c9BY148vT8_eyQSsTVY9WKoJ7RI2_3_rgokHtDt34P52BWdCPsN5doIW1RseJn9DktHIafIgw6jiC-ZrEeqOG1LxHN-C3BqIzYT_Eok8k7H8aP3QJcL9d3J1kB1b1wXz-fx9nv5aL2-ZnfnX947L5dpVrWhUx50zgrta8xdqKFpNWFLoiomyJwabAXHOrVEmFUNZy0TFtSsaFKHVn29JwXRxnX2bfLfiH0YQo7_wIQ2opKalJUTEm6qQis2raKoCxcgvuXsFOEiynUOQcikyhyCkUSRNDZyYk7bA28Ob8PvQKg9uTFQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Prajapati, P. K.</creator><creator>Chaira, D.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity</title><author>Prajapati, P. K. ; Chaira, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-6570d9c6b0cf7b01b73c8174b1e0e306c6faa4277aff67d5ce456774cdfb4e6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Argon</topic><topic>Boron carbide</topic><topic>Chemistry and Materials Science</topic><topic>Cold pressing</topic><topic>Compressive strength</topic><topic>Copper</topic><topic>Corrosion and Coatings</topic><topic>Densification</topic><topic>Diamond pyramid hardness</topic><topic>Electrical resistivity</topic><topic>Emission analysis</topic><topic>Field emission microscopy</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal matrix composites</topic><topic>Metallic Materials</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Optical microscopy</topic><topic>Powder metallurgy</topic><topic>Scanning electron microscopy</topic><topic>Sintering (powder metallurgy)</topic><topic>Technical Paper</topic><topic>Tribology</topic><topic>Weight</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Prajapati, P. K.</creatorcontrib><creatorcontrib>Chaira, D.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the Indian Institute of Metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prajapati, P. K.</au><au>Chaira, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity</atitle><jtitle>Transactions of the Indian Institute of Metals</jtitle><stitle>Trans Indian Inst Met</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>72</volume><issue>3</issue><spage>673</spage><epage>684</epage><pages>673-684</pages><issn>0972-2815</issn><eissn>0975-1645</eissn><abstract>Boron carbide-reinforced copper metal matrix composites have been the subject of broad research because of their good mechanical, electrical and tribological properties. In the present research, Cu–B 4 C composites containing 5, 10 and 15 wt% of B 4 C have been fabricated by cold powder compaction followed by conventional sintering at 900 °C for 1 h under argon atmosphere. The fabricated composites are characterized by X-ray diffraction, optical microscopy and field emission scanning electron microscopy (FESEM). From microscopic study, we have found that B 4 C particles are homogeneously distributed in the copper matrix and there is good compatibility between B 4 C and Cu. The microstructure analyzed by FESEM shows that the interface between Cu matrix and B 4 C is clean and no interfacial product is formed. The effect of B 4 C particles and their weight fraction on microstructure, mechanical properties and electrical conductivity is also studied. The Vickers hardness value increases with increasing weight percentage of boron carbide in Cu matrix. The hardness value increases from 38 VHN for pure copper to 79 VHN for Cu-15 wt% B 4 C metal matrix composite (MMC). A maximum relative density of 82% is achieved for Cu-5 wt% B 4 C MMC. The maximum compressive strength of 315 MPa is achieved for Cu-15 wt% B 4 C MMC. The electrical conductivity of pure Cu is found to be 4.5 × 10 6  S/m, and it decreases to 1.92 × 10 6 , 0.75 × 10 6 and 0.32 × 10 6  S/m for Cu-5 wt% B 4 C, Cu-10 wt% B 4 C and Cu-15 wt% B 4 C MMCs, respectively.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12666-018-1518-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0972-2815
ispartof Transactions of the Indian Institute of Metals, 2019-03, Vol.72 (3), p.673-684
issn 0972-2815
0975-1645
language eng
recordid cdi_proquest_journals_2191385579
source SpringerLink Journals - AutoHoldings
subjects Argon
Boron carbide
Chemistry and Materials Science
Cold pressing
Compressive strength
Copper
Corrosion and Coatings
Densification
Diamond pyramid hardness
Electrical resistivity
Emission analysis
Field emission microscopy
Materials Science
Mechanical properties
Metal matrix composites
Metallic Materials
Microscopy
Microstructure
Optical microscopy
Powder metallurgy
Scanning electron microscopy
Sintering (powder metallurgy)
Technical Paper
Tribology
Weight
X-ray diffraction
title Fabrication and Characterization of Cu–B4C Metal Matrix Composite by Powder Metallurgy: Effect of B4C on Microstructure, Mechanical Properties and Electrical Conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Characterization%20of%20Cu%E2%80%93B4C%20Metal%20Matrix%20Composite%20by%20Powder%20Metallurgy:%20Effect%20of%20B4C%20on%20Microstructure,%20Mechanical%20Properties%20and%20Electrical%20Conductivity&rft.jtitle=Transactions%20of%20the%20Indian%20Institute%20of%20Metals&rft.au=Prajapati,%20P.%20K.&rft.date=2019-03-01&rft.volume=72&rft.issue=3&rft.spage=673&rft.epage=684&rft.pages=673-684&rft.issn=0972-2815&rft.eissn=0975-1645&rft_id=info:doi/10.1007/s12666-018-1518-2&rft_dat=%3Cproquest_cross%3E2191385579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191385579&rft_id=info:pmid/&rfr_iscdi=true