IBM Scenario Planning Advisor: Plan recognition as AI planning in practice
We present the IBM Research Scenario Planning Advisor (SPA), a decision support system that allows users to generate diverse alternate scenarios of the future and enhance their ability to imagine the different possible outcomes, including unlikely but potentially impactful futures. Our system, takes...
Gespeichert in:
Veröffentlicht in: | Ai communications 2019-01, Vol.32 (1), p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Ai communications |
container_volume | 32 |
creator | Sohrabi, Shirin Katz, Michael Hassanzadeh, Oktie Udrea, Octavian Feblowitz, Mark D. Riabov, Anton |
description | We present the IBM Research Scenario Planning Advisor (SPA), a decision support system that allows users to generate diverse alternate scenarios of the future and enhance their ability to imagine the different possible outcomes, including unlikely but potentially impactful futures. Our system, takes as input the relevant information from news and social media, representing key risk drivers, as well as the domain knowledge and generates scenarios that explain the key risk drivers and describe the alternative futures. To this end, we provide a characterization of the problem, knowledge engineering methodology, and transformation to AI planning. Furthermore, we describe the computation of the scenarios, lessons learned, and the feedback received from the pilot deployment of the SPA system in IBM. |
doi_str_mv | 10.3233/AIC-180602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191383246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191383246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-7ca19c2f68e1b29eaeb5df0bdba863e7f1bf017ba1c0ad46805e4501ff9971cf3</originalsourceid><addsrcrecordid>eNo1kM1KxDAYRYMoWEc3PkHAnVDNlzRt4q4O_lRGFNR1SNNkyDAmNekIvr2jo6sLl8O9cBA6BXLBKGOXbTcvQZCa0D1UgGh4KSpO91FBJIWyAVofoqOcV4QQShkv0EN3_YhfjA06-Yif1zoEH5a4HT59junqt8HJmrgMfvIxYJ1x2-HxH_QBj0mbyRt7jA6cXmd78pcz9HZ78zq_LxdPd928XZSGcjmVjdEgDXW1sNBTabXt-eBIP_Ra1Mw2DnpHoOk1GKKHqhaE24oTcE7KBoxjM3S22x1T_NjYPKlV3KSwvVQUJDDBaFVvqfMdZVLMOVmnxuTfdfpSQNSPK7V1pXau2DeRIlsN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191383246</pqid></control><display><type>article</type><title>IBM Scenario Planning Advisor: Plan recognition as AI planning in practice</title><source>Business Source Complete</source><creator>Sohrabi, Shirin ; Katz, Michael ; Hassanzadeh, Oktie ; Udrea, Octavian ; Feblowitz, Mark D. ; Riabov, Anton</creator><contributor>Weng, Paul</contributor><creatorcontrib>Sohrabi, Shirin ; Katz, Michael ; Hassanzadeh, Oktie ; Udrea, Octavian ; Feblowitz, Mark D. ; Riabov, Anton ; Weng, Paul</creatorcontrib><description>We present the IBM Research Scenario Planning Advisor (SPA), a decision support system that allows users to generate diverse alternate scenarios of the future and enhance their ability to imagine the different possible outcomes, including unlikely but potentially impactful futures. Our system, takes as input the relevant information from news and social media, representing key risk drivers, as well as the domain knowledge and generates scenarios that explain the key risk drivers and describe the alternative futures. To this end, we provide a characterization of the problem, knowledge engineering methodology, and transformation to AI planning. Furthermore, we describe the computation of the scenarios, lessons learned, and the feedback received from the pilot deployment of the SPA system in IBM.</description><identifier>ISSN: 0921-7126</identifier><identifier>EISSN: 1875-8452</identifier><identifier>DOI: 10.3233/AIC-180602</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Advisors ; Artificial intelligence ; Decision support systems ; Digital media ; Knowledge engineering ; Planning ; Support systems</subject><ispartof>Ai communications, 2019-01, Vol.32 (1), p.1-13</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-7ca19c2f68e1b29eaeb5df0bdba863e7f1bf017ba1c0ad46805e4501ff9971cf3</citedby><cites>FETCH-LOGICAL-c259t-7ca19c2f68e1b29eaeb5df0bdba863e7f1bf017ba1c0ad46805e4501ff9971cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><contributor>Weng, Paul</contributor><creatorcontrib>Sohrabi, Shirin</creatorcontrib><creatorcontrib>Katz, Michael</creatorcontrib><creatorcontrib>Hassanzadeh, Oktie</creatorcontrib><creatorcontrib>Udrea, Octavian</creatorcontrib><creatorcontrib>Feblowitz, Mark D.</creatorcontrib><creatorcontrib>Riabov, Anton</creatorcontrib><title>IBM Scenario Planning Advisor: Plan recognition as AI planning in practice</title><title>Ai communications</title><description>We present the IBM Research Scenario Planning Advisor (SPA), a decision support system that allows users to generate diverse alternate scenarios of the future and enhance their ability to imagine the different possible outcomes, including unlikely but potentially impactful futures. Our system, takes as input the relevant information from news and social media, representing key risk drivers, as well as the domain knowledge and generates scenarios that explain the key risk drivers and describe the alternative futures. To this end, we provide a characterization of the problem, knowledge engineering methodology, and transformation to AI planning. Furthermore, we describe the computation of the scenarios, lessons learned, and the feedback received from the pilot deployment of the SPA system in IBM.</description><subject>Advisors</subject><subject>Artificial intelligence</subject><subject>Decision support systems</subject><subject>Digital media</subject><subject>Knowledge engineering</subject><subject>Planning</subject><subject>Support systems</subject><issn>0921-7126</issn><issn>1875-8452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1kM1KxDAYRYMoWEc3PkHAnVDNlzRt4q4O_lRGFNR1SNNkyDAmNekIvr2jo6sLl8O9cBA6BXLBKGOXbTcvQZCa0D1UgGh4KSpO91FBJIWyAVofoqOcV4QQShkv0EN3_YhfjA06-Yif1zoEH5a4HT59junqt8HJmrgMfvIxYJ1x2-HxH_QBj0mbyRt7jA6cXmd78pcz9HZ78zq_LxdPd928XZSGcjmVjdEgDXW1sNBTabXt-eBIP_Ra1Mw2DnpHoOk1GKKHqhaE24oTcE7KBoxjM3S22x1T_NjYPKlV3KSwvVQUJDDBaFVvqfMdZVLMOVmnxuTfdfpSQNSPK7V1pXau2DeRIlsN</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Sohrabi, Shirin</creator><creator>Katz, Michael</creator><creator>Hassanzadeh, Oktie</creator><creator>Udrea, Octavian</creator><creator>Feblowitz, Mark D.</creator><creator>Riabov, Anton</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>IBM Scenario Planning Advisor: Plan recognition as AI planning in practice</title><author>Sohrabi, Shirin ; Katz, Michael ; Hassanzadeh, Oktie ; Udrea, Octavian ; Feblowitz, Mark D. ; Riabov, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-7ca19c2f68e1b29eaeb5df0bdba863e7f1bf017ba1c0ad46805e4501ff9971cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advisors</topic><topic>Artificial intelligence</topic><topic>Decision support systems</topic><topic>Digital media</topic><topic>Knowledge engineering</topic><topic>Planning</topic><topic>Support systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohrabi, Shirin</creatorcontrib><creatorcontrib>Katz, Michael</creatorcontrib><creatorcontrib>Hassanzadeh, Oktie</creatorcontrib><creatorcontrib>Udrea, Octavian</creatorcontrib><creatorcontrib>Feblowitz, Mark D.</creatorcontrib><creatorcontrib>Riabov, Anton</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ai communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohrabi, Shirin</au><au>Katz, Michael</au><au>Hassanzadeh, Oktie</au><au>Udrea, Octavian</au><au>Feblowitz, Mark D.</au><au>Riabov, Anton</au><au>Weng, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IBM Scenario Planning Advisor: Plan recognition as AI planning in practice</atitle><jtitle>Ai communications</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0921-7126</issn><eissn>1875-8452</eissn><abstract>We present the IBM Research Scenario Planning Advisor (SPA), a decision support system that allows users to generate diverse alternate scenarios of the future and enhance their ability to imagine the different possible outcomes, including unlikely but potentially impactful futures. Our system, takes as input the relevant information from news and social media, representing key risk drivers, as well as the domain knowledge and generates scenarios that explain the key risk drivers and describe the alternative futures. To this end, we provide a characterization of the problem, knowledge engineering methodology, and transformation to AI planning. Furthermore, we describe the computation of the scenarios, lessons learned, and the feedback received from the pilot deployment of the SPA system in IBM.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/AIC-180602</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-7126 |
ispartof | Ai communications, 2019-01, Vol.32 (1), p.1-13 |
issn | 0921-7126 1875-8452 |
language | eng |
recordid | cdi_proquest_journals_2191383246 |
source | Business Source Complete |
subjects | Advisors Artificial intelligence Decision support systems Digital media Knowledge engineering Planning Support systems |
title | IBM Scenario Planning Advisor: Plan recognition as AI planning in practice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IBM%20Scenario%20Planning%20Advisor:%20Plan%20recognition%20as%20AI%20planning%20in%20practice&rft.jtitle=Ai%20communications&rft.au=Sohrabi,%20Shirin&rft.date=2019-01-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0921-7126&rft.eissn=1875-8452&rft_id=info:doi/10.3233/AIC-180602&rft_dat=%3Cproquest_cross%3E2191383246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191383246&rft_id=info:pmid/&rfr_iscdi=true |