Pseudocapacitive Graphene‐Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh‐Rate Sodium‐Ion Storage

The exploration of anode materials with enhanced electronic/ionic conductivity and structural stability is beneficial for the development of sodium‐ion batteries. Herein, a simple solution‐derived method is demonstrated to fabricate porous VO2 microsphere composite with a graphene‐wrapped structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-03, Vol.6 (5), p.1400-1406
Hauptverfasser: Zhao, Luzi, Wei, Qiulong, Huang, Yongxin, Luo, Rui, Xie, Man, Li, Li, Mai, Liqiang, Wu, Feng, Chen, Renjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1406
container_issue 5
container_start_page 1400
container_title ChemElectroChem
container_volume 6
creator Zhao, Luzi
Wei, Qiulong
Huang, Yongxin
Luo, Rui
Xie, Man
Li, Li
Mai, Liqiang
Wu, Feng
Chen, Renjie
description The exploration of anode materials with enhanced electronic/ionic conductivity and structural stability is beneficial for the development of sodium‐ion batteries. Herein, a simple solution‐derived method is demonstrated to fabricate porous VO2 microsphere composite with a graphene‐wrapped structure (VO2/G). When used as the anode material for sodium‐ion batteries, the VO2/G electrode delivers a high reversible specific capacity (373.0 mAh g−1), great rate capability (138.8 mA h g−1 at 24.0 A g−1, ≈21 s per charge/discharge), and excellent long‐cycling performance (95.9 % capacity retention for 3600 cycles at 2.0 A g−1). The outstanding electrochemical property of VO2/G is mainly attributed to its unique graphene‐wrapped porous structure and the pseudocapacitive‐dominated feature. In addition, the sodium‐ion storage mechanism of VO2/G is investigated by various ex‐situ characterization techniques. During the first sodiation process, the sodium‐ion appears to partially reduce VO2/G and form metallic vanadium, sodium oxide, and amorphous sodium vanadium. This work provides new fundamental information for the design and application of vanadium oxides for energy storage system. I want to see it painted, painted black: graphene‐wrapped porous VO2 microspheres are successfully synthesized. As anode for sodium‐ion batteries, the material delivers excellent cycling stability and rate performance.
doi_str_mv 10.1002/celc.201801704
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2191303762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191303762</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2004-91cd57c4557b29fac3911cfe5319a4887e5219bab6f759ef6e4a7f8fea7175ae3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYsoOOZefQ743JmkTdM-SplzMNlwTh9Dmt5sHV1Tk1bZmz_B3-gvMWMiPt3zwTn3ck8QXBM8JhjTWwW1GlNMUkw4js-CASVZEmJKkvN_-jIYObfDGBOCWZQmg6BfOuhLo2QrVdVV74CmVrZbaOD78-vVyxZKtDTW9A69LCh6rJQ1zhssOKSNReu6s9J1sqgByaY88bbabH3-SXaAVqas-r2nmWnQqjNWbuAquNCydjD6ncNgfT95zh_C-WI6y-_m4YZiHIcZUSXjKmaMFzTTUkUZIUoDi0gm4zTlwPxrhSwSzVkGOoFYcp1qkJxwJiEaBjenva01bz24TuxMbxt_UvggiXDEE-pd2cn1UdVwEK2t9tIeBMHiWK04Viv-qhX5ZJ7_UfQDzkFznw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191303762</pqid></control><display><type>article</type><title>Pseudocapacitive Graphene‐Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh‐Rate Sodium‐Ion Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Luzi ; Wei, Qiulong ; Huang, Yongxin ; Luo, Rui ; Xie, Man ; Li, Li ; Mai, Liqiang ; Wu, Feng ; Chen, Renjie</creator><creatorcontrib>Zhao, Luzi ; Wei, Qiulong ; Huang, Yongxin ; Luo, Rui ; Xie, Man ; Li, Li ; Mai, Liqiang ; Wu, Feng ; Chen, Renjie</creatorcontrib><description>The exploration of anode materials with enhanced electronic/ionic conductivity and structural stability is beneficial for the development of sodium‐ion batteries. Herein, a simple solution‐derived method is demonstrated to fabricate porous VO2 microsphere composite with a graphene‐wrapped structure (VO2/G). When used as the anode material for sodium‐ion batteries, the VO2/G electrode delivers a high reversible specific capacity (373.0 mAh g−1), great rate capability (138.8 mA h g−1 at 24.0 A g−1, ≈21 s per charge/discharge), and excellent long‐cycling performance (95.9 % capacity retention for 3600 cycles at 2.0 A g−1). The outstanding electrochemical property of VO2/G is mainly attributed to its unique graphene‐wrapped porous structure and the pseudocapacitive‐dominated feature. In addition, the sodium‐ion storage mechanism of VO2/G is investigated by various ex‐situ characterization techniques. During the first sodiation process, the sodium‐ion appears to partially reduce VO2/G and form metallic vanadium, sodium oxide, and amorphous sodium vanadium. This work provides new fundamental information for the design and application of vanadium oxides for energy storage system. I want to see it painted, painted black: graphene‐wrapped porous VO2 microspheres are successfully synthesized. As anode for sodium‐ion batteries, the material delivers excellent cycling stability and rate performance.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201801704</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Anodes ; Batteries ; Electrode materials ; Energy storage ; Graphene ; high rate capability ; Ion currents ; Ion storage ; Microspheres ; porous microspheres ; pseudocapacitance ; Sodium ; Sodium-ion batteries ; Structural stability ; Vanadium oxides</subject><ispartof>ChemElectroChem, 2019-03, Vol.6 (5), p.1400-1406</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7001-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201801704$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201801704$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Zhao, Luzi</creatorcontrib><creatorcontrib>Wei, Qiulong</creatorcontrib><creatorcontrib>Huang, Yongxin</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Xie, Man</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><title>Pseudocapacitive Graphene‐Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh‐Rate Sodium‐Ion Storage</title><title>ChemElectroChem</title><description>The exploration of anode materials with enhanced electronic/ionic conductivity and structural stability is beneficial for the development of sodium‐ion batteries. Herein, a simple solution‐derived method is demonstrated to fabricate porous VO2 microsphere composite with a graphene‐wrapped structure (VO2/G). When used as the anode material for sodium‐ion batteries, the VO2/G electrode delivers a high reversible specific capacity (373.0 mAh g−1), great rate capability (138.8 mA h g−1 at 24.0 A g−1, ≈21 s per charge/discharge), and excellent long‐cycling performance (95.9 % capacity retention for 3600 cycles at 2.0 A g−1). The outstanding electrochemical property of VO2/G is mainly attributed to its unique graphene‐wrapped porous structure and the pseudocapacitive‐dominated feature. In addition, the sodium‐ion storage mechanism of VO2/G is investigated by various ex‐situ characterization techniques. During the first sodiation process, the sodium‐ion appears to partially reduce VO2/G and form metallic vanadium, sodium oxide, and amorphous sodium vanadium. This work provides new fundamental information for the design and application of vanadium oxides for energy storage system. I want to see it painted, painted black: graphene‐wrapped porous VO2 microspheres are successfully synthesized. As anode for sodium‐ion batteries, the material delivers excellent cycling stability and rate performance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>high rate capability</subject><subject>Ion currents</subject><subject>Ion storage</subject><subject>Microspheres</subject><subject>porous microspheres</subject><subject>pseudocapacitance</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><subject>Vanadium oxides</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYsoOOZefQ743JmkTdM-SplzMNlwTh9Dmt5sHV1Tk1bZmz_B3-gvMWMiPt3zwTn3ck8QXBM8JhjTWwW1GlNMUkw4js-CASVZEmJKkvN_-jIYObfDGBOCWZQmg6BfOuhLo2QrVdVV74CmVrZbaOD78-vVyxZKtDTW9A69LCh6rJQ1zhssOKSNReu6s9J1sqgByaY88bbabH3-SXaAVqas-r2nmWnQqjNWbuAquNCydjD6ncNgfT95zh_C-WI6y-_m4YZiHIcZUSXjKmaMFzTTUkUZIUoDi0gm4zTlwPxrhSwSzVkGOoFYcp1qkJxwJiEaBjenva01bz24TuxMbxt_UvggiXDEE-pd2cn1UdVwEK2t9tIeBMHiWK04Viv-qhX5ZJ7_UfQDzkFznw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zhao, Luzi</creator><creator>Wei, Qiulong</creator><creator>Huang, Yongxin</creator><creator>Luo, Rui</creator><creator>Xie, Man</creator><creator>Li, Li</creator><creator>Mai, Liqiang</creator><creator>Wu, Feng</creator><creator>Chen, Renjie</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></search><sort><creationdate>20190301</creationdate><title>Pseudocapacitive Graphene‐Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh‐Rate Sodium‐Ion Storage</title><author>Zhao, Luzi ; Wei, Qiulong ; Huang, Yongxin ; Luo, Rui ; Xie, Man ; Li, Li ; Mai, Liqiang ; Wu, Feng ; Chen, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2004-91cd57c4557b29fac3911cfe5319a4887e5219bab6f759ef6e4a7f8fea7175ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>high rate capability</topic><topic>Ion currents</topic><topic>Ion storage</topic><topic>Microspheres</topic><topic>porous microspheres</topic><topic>pseudocapacitance</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Luzi</creatorcontrib><creatorcontrib>Wei, Qiulong</creatorcontrib><creatorcontrib>Huang, Yongxin</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Xie, Man</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Luzi</au><au>Wei, Qiulong</au><au>Huang, Yongxin</au><au>Luo, Rui</au><au>Xie, Man</au><au>Li, Li</au><au>Mai, Liqiang</au><au>Wu, Feng</au><au>Chen, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudocapacitive Graphene‐Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh‐Rate Sodium‐Ion Storage</atitle><jtitle>ChemElectroChem</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>6</volume><issue>5</issue><spage>1400</spage><epage>1406</epage><pages>1400-1406</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>The exploration of anode materials with enhanced electronic/ionic conductivity and structural stability is beneficial for the development of sodium‐ion batteries. Herein, a simple solution‐derived method is demonstrated to fabricate porous VO2 microsphere composite with a graphene‐wrapped structure (VO2/G). When used as the anode material for sodium‐ion batteries, the VO2/G electrode delivers a high reversible specific capacity (373.0 mAh g−1), great rate capability (138.8 mA h g−1 at 24.0 A g−1, ≈21 s per charge/discharge), and excellent long‐cycling performance (95.9 % capacity retention for 3600 cycles at 2.0 A g−1). The outstanding electrochemical property of VO2/G is mainly attributed to its unique graphene‐wrapped porous structure and the pseudocapacitive‐dominated feature. In addition, the sodium‐ion storage mechanism of VO2/G is investigated by various ex‐situ characterization techniques. During the first sodiation process, the sodium‐ion appears to partially reduce VO2/G and form metallic vanadium, sodium oxide, and amorphous sodium vanadium. This work provides new fundamental information for the design and application of vanadium oxides for energy storage system. I want to see it painted, painted black: graphene‐wrapped porous VO2 microspheres are successfully synthesized. As anode for sodium‐ion batteries, the material delivers excellent cycling stability and rate performance.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201801704</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2019-03, Vol.6 (5), p.1400-1406
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2191303762
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Batteries
Electrode materials
Energy storage
Graphene
high rate capability
Ion currents
Ion storage
Microspheres
porous microspheres
pseudocapacitance
Sodium
Sodium-ion batteries
Structural stability
Vanadium oxides
title Pseudocapacitive Graphene‐Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh‐Rate Sodium‐Ion Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudocapacitive%20Graphene%E2%80%90Wrapped%20Porous%20VO2%20Microspheres%20for%20Ultrastable%20and%20Ultrahigh%E2%80%90Rate%20Sodium%E2%80%90Ion%20Storage&rft.jtitle=ChemElectroChem&rft.au=Zhao,%20Luzi&rft.date=2019-03-01&rft.volume=6&rft.issue=5&rft.spage=1400&rft.epage=1406&rft.pages=1400-1406&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201801704&rft_dat=%3Cproquest_wiley%3E2191303762%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191303762&rft_id=info:pmid/&rfr_iscdi=true