Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids

Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced synthesis & catalysis 2019-03, Vol.361 (6), p.1359-1367
Hauptverfasser: Lee, Da‐Som, Song, Ji‐Won, Voß, Moritz, Schuiten, Eva, Akula, Ravi Kumar, Kwon, Yong‐Uk, Bornscheuer, Uwe, Park, Jin‐Byung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1367
container_issue 6
container_start_page 1359
container_title Advanced synthesis & catalysis
container_volume 361
creator Lee, Da‐Som
Song, Ji‐Won
Voß, Moritz
Schuiten, Eva
Akula, Ravi Kumar
Kwon, Yong‐Uk
Bornscheuer, Uwe
Park, Jin‐Byung
description Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia. 10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.
doi_str_mv 10.1002/adsc.201801501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191301529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191301529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTjnHcV2PIbSAVAmJjzlyknPrKrFLnKoKv55URWVkuhve5z3dQ8gtgwkDiO91FcpJDGwGTAA7IyM2ZSJK2FSdn3YBl-QqhA0AkzMpR2Q1d999gzTTodQV0jfUZWe9C9T4lnZrpA_Wh94NW7CBekOX3q1ottbW0bS227XubEnTxjocmNY3Q4XDvS5qpAvddT1NS1uFa3JhdB3w5neOyedi_pE9R8vXp5csXUYlFwmLDE4NYCliJXgBnBtVqYTLpCi4AAMJMpUIyTUwULLA4VepsYoV57FEiDUfk7tj77b1XzsMXb7xu9YNJ_OYKcYHN0N6TCbHVNn6EFo0-ba1jW77nEF-kJkfZOYnmQOgjsDe1tj_k87Tx_fsj_0BSyR3bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191301529</pqid></control><display><type>article</type><title>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Da‐Som ; Song, Ji‐Won ; Voß, Moritz ; Schuiten, Eva ; Akula, Ravi Kumar ; Kwon, Yong‐Uk ; Bornscheuer, Uwe ; Park, Jin‐Byung</creator><creatorcontrib>Lee, Da‐Som ; Song, Ji‐Won ; Voß, Moritz ; Schuiten, Eva ; Akula, Ravi Kumar ; Kwon, Yong‐Uk ; Bornscheuer, Uwe ; Park, Jin‐Byung</creatorcontrib><description>Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia. 10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.</description><identifier>ISSN: 1615-4150</identifier><identifier>EISSN: 1615-4169</identifier><identifier>DOI: 10.1002/adsc.201801501</identifier><language>eng</language><publisher>Heidelberg: Wiley Subscription Services, Inc</publisher><subject>Alcohol dehydrogenase ; Aliphatic amines ; amine transaminase ; Amines ; Bacteria ; Biosynthesis ; Biotransformation ; Cascade chemical reactions ; Chains ; Chemical synthesis ; Conversion ; Dry cells ; E coli ; enzyme cascade reactions ; Enzymes ; Escherichia coli ; Fatty acids ; long chain aliphatic amines ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Oleic acid ; Oxidation ; Ricinoleic acid ; whole cell biotransformation</subject><ispartof>Advanced synthesis &amp; catalysis, 2019-03, Vol.361 (6), p.1359-1367</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</citedby><cites>FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadsc.201801501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadsc.201801501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Da‐Som</creatorcontrib><creatorcontrib>Song, Ji‐Won</creatorcontrib><creatorcontrib>Voß, Moritz</creatorcontrib><creatorcontrib>Schuiten, Eva</creatorcontrib><creatorcontrib>Akula, Ravi Kumar</creatorcontrib><creatorcontrib>Kwon, Yong‐Uk</creatorcontrib><creatorcontrib>Bornscheuer, Uwe</creatorcontrib><creatorcontrib>Park, Jin‐Byung</creatorcontrib><title>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</title><title>Advanced synthesis &amp; catalysis</title><description>Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia. 10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.</description><subject>Alcohol dehydrogenase</subject><subject>Aliphatic amines</subject><subject>amine transaminase</subject><subject>Amines</subject><subject>Bacteria</subject><subject>Biosynthesis</subject><subject>Biotransformation</subject><subject>Cascade chemical reactions</subject><subject>Chains</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Dry cells</subject><subject>E coli</subject><subject>enzyme cascade reactions</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Fatty acids</subject><subject>long chain aliphatic amines</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oleic acid</subject><subject>Oxidation</subject><subject>Ricinoleic acid</subject><subject>whole cell biotransformation</subject><issn>1615-4150</issn><issn>1615-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTjnHcV2PIbSAVAmJjzlyknPrKrFLnKoKv55URWVkuhve5z3dQ8gtgwkDiO91FcpJDGwGTAA7IyM2ZSJK2FSdn3YBl-QqhA0AkzMpR2Q1d999gzTTodQV0jfUZWe9C9T4lnZrpA_Wh94NW7CBekOX3q1ottbW0bS227XubEnTxjocmNY3Q4XDvS5qpAvddT1NS1uFa3JhdB3w5neOyedi_pE9R8vXp5csXUYlFwmLDE4NYCliJXgBnBtVqYTLpCi4AAMJMpUIyTUwULLA4VepsYoV57FEiDUfk7tj77b1XzsMXb7xu9YNJ_OYKcYHN0N6TCbHVNn6EFo0-ba1jW77nEF-kJkfZOYnmQOgjsDe1tj_k87Tx_fsj_0BSyR3bg</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Lee, Da‐Som</creator><creator>Song, Ji‐Won</creator><creator>Voß, Moritz</creator><creator>Schuiten, Eva</creator><creator>Akula, Ravi Kumar</creator><creator>Kwon, Yong‐Uk</creator><creator>Bornscheuer, Uwe</creator><creator>Park, Jin‐Byung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190315</creationdate><title>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</title><author>Lee, Da‐Som ; Song, Ji‐Won ; Voß, Moritz ; Schuiten, Eva ; Akula, Ravi Kumar ; Kwon, Yong‐Uk ; Bornscheuer, Uwe ; Park, Jin‐Byung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcohol dehydrogenase</topic><topic>Aliphatic amines</topic><topic>amine transaminase</topic><topic>Amines</topic><topic>Bacteria</topic><topic>Biosynthesis</topic><topic>Biotransformation</topic><topic>Cascade chemical reactions</topic><topic>Chains</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Dry cells</topic><topic>E coli</topic><topic>enzyme cascade reactions</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Fatty acids</topic><topic>long chain aliphatic amines</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oleic acid</topic><topic>Oxidation</topic><topic>Ricinoleic acid</topic><topic>whole cell biotransformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Da‐Som</creatorcontrib><creatorcontrib>Song, Ji‐Won</creatorcontrib><creatorcontrib>Voß, Moritz</creatorcontrib><creatorcontrib>Schuiten, Eva</creatorcontrib><creatorcontrib>Akula, Ravi Kumar</creatorcontrib><creatorcontrib>Kwon, Yong‐Uk</creatorcontrib><creatorcontrib>Bornscheuer, Uwe</creatorcontrib><creatorcontrib>Park, Jin‐Byung</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced synthesis &amp; catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Da‐Som</au><au>Song, Ji‐Won</au><au>Voß, Moritz</au><au>Schuiten, Eva</au><au>Akula, Ravi Kumar</au><au>Kwon, Yong‐Uk</au><au>Bornscheuer, Uwe</au><au>Park, Jin‐Byung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</atitle><jtitle>Advanced synthesis &amp; catalysis</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>361</volume><issue>6</issue><spage>1359</spage><epage>1367</epage><pages>1359-1367</pages><issn>1615-4150</issn><eissn>1615-4169</eissn><abstract>Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia. 10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.</abstract><cop>Heidelberg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adsc.201801501</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-4150
ispartof Advanced synthesis & catalysis, 2019-03, Vol.361 (6), p.1359-1367
issn 1615-4150
1615-4169
language eng
recordid cdi_proquest_journals_2191301529
source Wiley Online Library Journals Frontfile Complete
subjects Alcohol dehydrogenase
Aliphatic amines
amine transaminase
Amines
Bacteria
Biosynthesis
Biotransformation
Cascade chemical reactions
Chains
Chemical synthesis
Conversion
Dry cells
E coli
enzyme cascade reactions
Enzymes
Escherichia coli
Fatty acids
long chain aliphatic amines
Nicotinamide
Nicotinamide adenine dinucleotide
Oleic acid
Oxidation
Ricinoleic acid
whole cell biotransformation
title Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20Cascade%20Reactions%20for%20the%20Biosynthesis%20of%20Long%20Chain%20Aliphatic%20Amines%20from%20Renewable%20Fatty%20Acids&rft.jtitle=Advanced%20synthesis%20&%20catalysis&rft.au=Lee,%20Da%E2%80%90Som&rft.date=2019-03-15&rft.volume=361&rft.issue=6&rft.spage=1359&rft.epage=1367&rft.pages=1359-1367&rft.issn=1615-4150&rft.eissn=1615-4169&rft_id=info:doi/10.1002/adsc.201801501&rft_dat=%3Cproquest_cross%3E2191301529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191301529&rft_id=info:pmid/&rfr_iscdi=true