Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids
Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic a...
Gespeichert in:
Veröffentlicht in: | Advanced synthesis & catalysis 2019-03, Vol.361 (6), p.1359-1367 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1367 |
---|---|
container_issue | 6 |
container_start_page | 1359 |
container_title | Advanced synthesis & catalysis |
container_volume | 361 |
creator | Lee, Da‐Som Song, Ji‐Won Voß, Moritz Schuiten, Eva Akula, Ravi Kumar Kwon, Yong‐Uk Bornscheuer, Uwe Park, Jin‐Byung |
description | Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia.
10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality. |
doi_str_mv | 10.1002/adsc.201801501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191301529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191301529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiTjnHcV2PIbSAVAmJjzlyknPrKrFLnKoKv55URWVkuhve5z3dQ8gtgwkDiO91FcpJDGwGTAA7IyM2ZSJK2FSdn3YBl-QqhA0AkzMpR2Q1d999gzTTodQV0jfUZWe9C9T4lnZrpA_Wh94NW7CBekOX3q1ottbW0bS227XubEnTxjocmNY3Q4XDvS5qpAvddT1NS1uFa3JhdB3w5neOyedi_pE9R8vXp5csXUYlFwmLDE4NYCliJXgBnBtVqYTLpCi4AAMJMpUIyTUwULLA4VepsYoV57FEiDUfk7tj77b1XzsMXb7xu9YNJ_OYKcYHN0N6TCbHVNn6EFo0-ba1jW77nEF-kJkfZOYnmQOgjsDe1tj_k87Tx_fsj_0BSyR3bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191301529</pqid></control><display><type>article</type><title>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Da‐Som ; Song, Ji‐Won ; Voß, Moritz ; Schuiten, Eva ; Akula, Ravi Kumar ; Kwon, Yong‐Uk ; Bornscheuer, Uwe ; Park, Jin‐Byung</creator><creatorcontrib>Lee, Da‐Som ; Song, Ji‐Won ; Voß, Moritz ; Schuiten, Eva ; Akula, Ravi Kumar ; Kwon, Yong‐Uk ; Bornscheuer, Uwe ; Park, Jin‐Byung</creatorcontrib><description>Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia.
10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.</description><identifier>ISSN: 1615-4150</identifier><identifier>EISSN: 1615-4169</identifier><identifier>DOI: 10.1002/adsc.201801501</identifier><language>eng</language><publisher>Heidelberg: Wiley Subscription Services, Inc</publisher><subject>Alcohol dehydrogenase ; Aliphatic amines ; amine transaminase ; Amines ; Bacteria ; Biosynthesis ; Biotransformation ; Cascade chemical reactions ; Chains ; Chemical synthesis ; Conversion ; Dry cells ; E coli ; enzyme cascade reactions ; Enzymes ; Escherichia coli ; Fatty acids ; long chain aliphatic amines ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Oleic acid ; Oxidation ; Ricinoleic acid ; whole cell biotransformation</subject><ispartof>Advanced synthesis & catalysis, 2019-03, Vol.361 (6), p.1359-1367</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</citedby><cites>FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadsc.201801501$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadsc.201801501$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Da‐Som</creatorcontrib><creatorcontrib>Song, Ji‐Won</creatorcontrib><creatorcontrib>Voß, Moritz</creatorcontrib><creatorcontrib>Schuiten, Eva</creatorcontrib><creatorcontrib>Akula, Ravi Kumar</creatorcontrib><creatorcontrib>Kwon, Yong‐Uk</creatorcontrib><creatorcontrib>Bornscheuer, Uwe</creatorcontrib><creatorcontrib>Park, Jin‐Byung</creatorcontrib><title>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</title><title>Advanced synthesis & catalysis</title><description>Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia.
10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.</description><subject>Alcohol dehydrogenase</subject><subject>Aliphatic amines</subject><subject>amine transaminase</subject><subject>Amines</subject><subject>Bacteria</subject><subject>Biosynthesis</subject><subject>Biotransformation</subject><subject>Cascade chemical reactions</subject><subject>Chains</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Dry cells</subject><subject>E coli</subject><subject>enzyme cascade reactions</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Fatty acids</subject><subject>long chain aliphatic amines</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oleic acid</subject><subject>Oxidation</subject><subject>Ricinoleic acid</subject><subject>whole cell biotransformation</subject><issn>1615-4150</issn><issn>1615-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiTjnHcV2PIbSAVAmJjzlyknPrKrFLnKoKv55URWVkuhve5z3dQ8gtgwkDiO91FcpJDGwGTAA7IyM2ZSJK2FSdn3YBl-QqhA0AkzMpR2Q1d999gzTTodQV0jfUZWe9C9T4lnZrpA_Wh94NW7CBekOX3q1ottbW0bS227XubEnTxjocmNY3Q4XDvS5qpAvddT1NS1uFa3JhdB3w5neOyedi_pE9R8vXp5csXUYlFwmLDE4NYCliJXgBnBtVqYTLpCi4AAMJMpUIyTUwULLA4VepsYoV57FEiDUfk7tj77b1XzsMXb7xu9YNJ_OYKcYHN0N6TCbHVNn6EFo0-ba1jW77nEF-kJkfZOYnmQOgjsDe1tj_k87Tx_fsj_0BSyR3bg</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Lee, Da‐Som</creator><creator>Song, Ji‐Won</creator><creator>Voß, Moritz</creator><creator>Schuiten, Eva</creator><creator>Akula, Ravi Kumar</creator><creator>Kwon, Yong‐Uk</creator><creator>Bornscheuer, Uwe</creator><creator>Park, Jin‐Byung</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190315</creationdate><title>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</title><author>Lee, Da‐Som ; Song, Ji‐Won ; Voß, Moritz ; Schuiten, Eva ; Akula, Ravi Kumar ; Kwon, Yong‐Uk ; Bornscheuer, Uwe ; Park, Jin‐Byung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-fe6f0ec52953b033f9d94374bb350f04e194573a01097be1807aed293327e02a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcohol dehydrogenase</topic><topic>Aliphatic amines</topic><topic>amine transaminase</topic><topic>Amines</topic><topic>Bacteria</topic><topic>Biosynthesis</topic><topic>Biotransformation</topic><topic>Cascade chemical reactions</topic><topic>Chains</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Dry cells</topic><topic>E coli</topic><topic>enzyme cascade reactions</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Fatty acids</topic><topic>long chain aliphatic amines</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oleic acid</topic><topic>Oxidation</topic><topic>Ricinoleic acid</topic><topic>whole cell biotransformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Da‐Som</creatorcontrib><creatorcontrib>Song, Ji‐Won</creatorcontrib><creatorcontrib>Voß, Moritz</creatorcontrib><creatorcontrib>Schuiten, Eva</creatorcontrib><creatorcontrib>Akula, Ravi Kumar</creatorcontrib><creatorcontrib>Kwon, Yong‐Uk</creatorcontrib><creatorcontrib>Bornscheuer, Uwe</creatorcontrib><creatorcontrib>Park, Jin‐Byung</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced synthesis & catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Da‐Som</au><au>Song, Ji‐Won</au><au>Voß, Moritz</au><au>Schuiten, Eva</au><au>Akula, Ravi Kumar</au><au>Kwon, Yong‐Uk</au><au>Bornscheuer, Uwe</au><au>Park, Jin‐Byung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids</atitle><jtitle>Advanced synthesis & catalysis</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>361</volume><issue>6</issue><spage>1359</spage><epage>1367</epage><pages>1359-1367</pages><issn>1615-4150</issn><eissn>1615-4169</eissn><abstract>Enzyme cascade reactions for the synthesis of long chain aliphatic amines such as (Z)‐12‐aminooctadec‐9‐enoic acid, 10‐ or 12‐aminooctadecanoic acid, and 10‐amino‐12‐hydroxyoctadecanoic acid from renewable fatty acids were investigated. (Z)‐12‐aminooctadec‐9‐enoic acid was produced from ricinoleic acid ((Z)‐12‐hydroxyoctadec‐9‐enoic acid) via (Z)‐12‐ketooctadec‐9‐enoic acid with a conversion of 71% by a two‐step in vivo biotransformation involving a long chain secondary alcohol dehydrogenase (SADH) from Micrococcus luteus and a variant of the amine transaminase (ATA) from Vibrio fluvialis. 10‐Aminooctadecanoic acid was prepared from oleic acid ((Z)‐octadec‐9‐enoic acid) via 10‐hydroxyoctadecanoic acid and 10‐ketooctadecanoic acid by an in vivo three‐step biocatalysis reaction involving not only the SADH and ATA variants, but also a fatty acid double bond hydratase (OhyA) from Stenotrophomonas maltophilia.
10‐Aminooctadecanoic acid was produced at a total rate of 4.4 U/g dry cells with a conversion of 87% by recombinant Escherichia coli expressing the SADH and ATA variants, and OhyA simultaneously. In addition, bulky aliphatic amines could also be produced by the isolated enzymes (i. e., the SADH, the ATA variants, and a nicotinamide adenine dinucleotide (NADH) oxidase from Lactobacillus brevis) with methylbenzylamine or benzylamine as amino donor. This study thus contributes to the biosynthesis of long chain aliphatic amines having two large substituents next to the amine functionality.</abstract><cop>Heidelberg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adsc.201801501</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-4150 |
ispartof | Advanced synthesis & catalysis, 2019-03, Vol.361 (6), p.1359-1367 |
issn | 1615-4150 1615-4169 |
language | eng |
recordid | cdi_proquest_journals_2191301529 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alcohol dehydrogenase Aliphatic amines amine transaminase Amines Bacteria Biosynthesis Biotransformation Cascade chemical reactions Chains Chemical synthesis Conversion Dry cells E coli enzyme cascade reactions Enzymes Escherichia coli Fatty acids long chain aliphatic amines Nicotinamide Nicotinamide adenine dinucleotide Oleic acid Oxidation Ricinoleic acid whole cell biotransformation |
title | Enzyme Cascade Reactions for the Biosynthesis of Long Chain Aliphatic Amines from Renewable Fatty Acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20Cascade%20Reactions%20for%20the%20Biosynthesis%20of%20Long%20Chain%20Aliphatic%20Amines%20from%20Renewable%20Fatty%20Acids&rft.jtitle=Advanced%20synthesis%20&%20catalysis&rft.au=Lee,%20Da%E2%80%90Som&rft.date=2019-03-15&rft.volume=361&rft.issue=6&rft.spage=1359&rft.epage=1367&rft.pages=1359-1367&rft.issn=1615-4150&rft.eissn=1615-4169&rft_id=info:doi/10.1002/adsc.201801501&rft_dat=%3Cproquest_cross%3E2191301529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191301529&rft_id=info:pmid/&rfr_iscdi=true |