The Complexity of the Optimal Searcher Path Problem
In this note we show that the problem of finding an optimal searcher path that maximizes the probability of detecting a stationary target by the end of a fixed time is NP-complete. We also demonstrate that the problem of finding a path that minimizes mean time to detection is NP-hard.
Gespeichert in:
Veröffentlicht in: | Operations research 1986-03, Vol.34 (2), p.324-327 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 2 |
container_start_page | 324 |
container_title | Operations research |
container_volume | 34 |
creator | Trummel, K. E. Weisinger, J. R. |
description | In this note we show that the problem of finding an optimal searcher path that maximizes the probability of detecting a stationary target by the end of a fixed time is NP-complete. We also demonstrate that the problem of finding a path that minimizes mean time to detection is NP-hard. |
doi_str_mv | 10.1287/opre.34.2.324 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_219126459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>170828</jstor_id><sourcerecordid>170828</sourcerecordid><originalsourceid>FETCH-LOGICAL-j257t-58b648d5e66b4a1b666cc63795949bf4ba7e7332b5076b993727873b3e66298b3</originalsourceid><addsrcrecordid>eNp1z01LAzEQBuAgCq7Voycvi3rdNcnk8yjFLyi0YAVvS7JmaZdtsyYp2H9voMWbp4GZZ2Z4EbomuCZUyQc_BlcDq2kNlJ2ggnAqKs4EnKICY8AVCPZ5ji5i7DHGmgteIFiuXDn1m3FwP-u0L31XptyZj2m9MUP57kxoVy6UC5NW5SJ4O7jNJTrrzBDd1bFO0Mfz03L6Ws3mL2_Tx1nVUy5TxZUVTH1xJ4RlhlghRNsKkJprpm3HrJFOAlDLsRRWa5BUKgkW8gLVysIE3R7ujsF_71xMTe93YZtfNpRoQgXjOqO7_xCBHFqyg7o_KhNbM3TBbNt1bMaQU4Z9ozCXmOHMbg6sj8mHvzGRWFEFv5ufZhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1303074459</pqid></control><display><type>article</type><title>The Complexity of the Optimal Searcher Path Problem</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>Periodicals Index Online</source><source>Jstor Complete Legacy</source><creator>Trummel, K. E. ; Weisinger, J. R.</creator><creatorcontrib>Trummel, K. E. ; Weisinger, J. R.</creatorcontrib><description>In this note we show that the problem of finding an optimal searcher path that maximizes the probability of detecting a stationary target by the end of a fixed time is NP-complete. We also demonstrate that the problem of finding a path that minimizes mean time to detection is NP-hard.</description><identifier>ISSN: 0030-364X</identifier><identifier>EISSN: 1526-5463</identifier><identifier>DOI: 10.1287/opre.34.2.324</identifier><identifier>CODEN: OPREAI</identifier><language>eng</language><publisher>Linthicum, MD: Operations Research Society of America</publisher><subject>Algorithms ; Applied sciences ; Exact sciences and technology ; Integers ; Mathematical models ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimal ; Polynomials ; Probability ; Probability distributions ; Searches ; Target location and tracking ; Technical Notes ; Vertices</subject><ispartof>Operations research, 1986-03, Vol.34 (2), p.324-327</ispartof><rights>Copyright 1986 The Operations Research Society of America</rights><rights>1987 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Mar/Apr 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/170828$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/170828$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,27856,27911,27912,58004,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8057040$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Trummel, K. E.</creatorcontrib><creatorcontrib>Weisinger, J. R.</creatorcontrib><title>The Complexity of the Optimal Searcher Path Problem</title><title>Operations research</title><description>In this note we show that the problem of finding an optimal searcher path that maximizes the probability of detecting a stationary target by the end of a fixed time is NP-complete. We also demonstrate that the problem of finding a path that minimizes mean time to detection is NP-hard.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Integers</subject><subject>Mathematical models</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimal</subject><subject>Polynomials</subject><subject>Probability</subject><subject>Probability distributions</subject><subject>Searches</subject><subject>Target location and tracking</subject><subject>Technical Notes</subject><subject>Vertices</subject><issn>0030-364X</issn><issn>1526-5463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1z01LAzEQBuAgCq7Voycvi3rdNcnk8yjFLyi0YAVvS7JmaZdtsyYp2H9voMWbp4GZZ2Z4EbomuCZUyQc_BlcDq2kNlJ2ggnAqKs4EnKICY8AVCPZ5ji5i7DHGmgteIFiuXDn1m3FwP-u0L31XptyZj2m9MUP57kxoVy6UC5NW5SJ4O7jNJTrrzBDd1bFO0Mfz03L6Ws3mL2_Tx1nVUy5TxZUVTH1xJ4RlhlghRNsKkJprpm3HrJFOAlDLsRRWa5BUKgkW8gLVysIE3R7ujsF_71xMTe93YZtfNpRoQgXjOqO7_xCBHFqyg7o_KhNbM3TBbNt1bMaQU4Z9ozCXmOHMbg6sj8mHvzGRWFEFv5ufZhk</recordid><startdate>19860301</startdate><enddate>19860301</enddate><creator>Trummel, K. E.</creator><creator>Weisinger, J. R.</creator><general>Operations Research Society of America</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>HJHVS</scope><scope>IBDFT</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>JQ2</scope><scope>K9.</scope></search><sort><creationdate>19860301</creationdate><title>The Complexity of the Optimal Searcher Path Problem</title><author>Trummel, K. E. ; Weisinger, J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j257t-58b648d5e66b4a1b666cc63795949bf4ba7e7332b5076b993727873b3e66298b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Integers</topic><topic>Mathematical models</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimal</topic><topic>Polynomials</topic><topic>Probability</topic><topic>Probability distributions</topic><topic>Searches</topic><topic>Target location and tracking</topic><topic>Technical Notes</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trummel, K. E.</creatorcontrib><creatorcontrib>Weisinger, J. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Periodicals Index Online Segment 19</collection><collection>Periodicals Index Online Segment 27</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trummel, K. E.</au><au>Weisinger, J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Complexity of the Optimal Searcher Path Problem</atitle><jtitle>Operations research</jtitle><date>1986-03-01</date><risdate>1986</risdate><volume>34</volume><issue>2</issue><spage>324</spage><epage>327</epage><pages>324-327</pages><issn>0030-364X</issn><eissn>1526-5463</eissn><coden>OPREAI</coden><abstract>In this note we show that the problem of finding an optimal searcher path that maximizes the probability of detecting a stationary target by the end of a fixed time is NP-complete. We also demonstrate that the problem of finding a path that minimizes mean time to detection is NP-hard.</abstract><cop>Linthicum, MD</cop><pub>Operations Research Society of America</pub><doi>10.1287/opre.34.2.324</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-364X |
ispartof | Operations research, 1986-03, Vol.34 (2), p.324-327 |
issn | 0030-364X 1526-5463 |
language | eng |
recordid | cdi_proquest_journals_219126459 |
source | INFORMS PubsOnLine; Business Source Complete; Periodicals Index Online; Jstor Complete Legacy |
subjects | Algorithms Applied sciences Exact sciences and technology Integers Mathematical models Operational research and scientific management Operational research. Management science Operations research Optimal Polynomials Probability Probability distributions Searches Target location and tracking Technical Notes Vertices |
title | The Complexity of the Optimal Searcher Path Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Complexity%20of%20the%20Optimal%20Searcher%20Path%20Problem&rft.jtitle=Operations%20research&rft.au=Trummel,%20K.%20E.&rft.date=1986-03-01&rft.volume=34&rft.issue=2&rft.spage=324&rft.epage=327&rft.pages=324-327&rft.issn=0030-364X&rft.eissn=1526-5463&rft.coden=OPREAI&rft_id=info:doi/10.1287/opre.34.2.324&rft_dat=%3Cjstor_proqu%3E170828%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1303074459&rft_id=info:pmid/&rft_jstor_id=170828&rfr_iscdi=true |