Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications

Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanopa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2019-03, Vol.9 (3), p.419-426
Hauptverfasser: Lim, Ying Ying, Nakagawa, Hiroshi, Hashino, Masaru, Aoyagi, Masahiro, Kikuchi, Katsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 3
container_start_page 419
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 9
creator Lim, Ying Ying
Nakagawa, Hiroshi
Hashino, Masaru
Aoyagi, Masahiro
Kikuchi, Katsuya
description Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.
doi_str_mv 10.1109/TCPMT.2019.2893232
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191264447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8620275</ieee_id><sourcerecordid>2191264447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEtPYH4BLJM4d-Wia9DjKx5CGmESRuEVemmwdW1uS9sC_J2NovtiW_Np-H4SuKZlSSvK7sli-llNGaD5lKueMszM0YlRkCc-VOD_VglyiSQhbEkMoIgkfoc85-KqxIeBiAx5Mb30d-toE3Do8G3DRNjZ530BnK3w_7LuAS_Br28fWtR7z5AEvwXzBum7WeNZ1u9pAX7dNuEIXDnbBTv7zGH08PZbFPFm8Pb8Us0VieEb7RKiMibSiwhG-ypWDzBLIKivByYwIooATahSVipq04sbJFTXRo4OVkVV0O0a3x72db78HG3q9bQffxJOa0ZyyLE1TGafYccr4NgRvne58vQf_oynRB4j6D6I-QNT_EKPo5iiqrbUnQXyYMCn4L8dGbJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191264447</pqid></control><display><type>article</type><title>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Ying Ying ; Nakagawa, Hiroshi ; Hashino, Masaru ; Aoyagi, Masahiro ; Kikuchi, Katsuya</creator><creatorcontrib>Lim, Ying Ying ; Nakagawa, Hiroshi ; Hashino, Masaru ; Aoyagi, Masahiro ; Kikuchi, Katsuya</creatorcontrib><description>Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2019.2893232</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bonding ; Cone-shaped bumps ; Density ; Electronic packaging ; Gold ; Hardness ; Integrated circuits ; Interconnections ; Large scale integration ; Mechanical properties ; nanoparticle deposition (NPD) ; Nanoparticles ; Packaging ; Resists ; Silicon ; Substrates ; Temperature ; Temperature dependence ; Temperature effects</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2019-03, Vol.9 (3), p.419-426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</citedby><cites>FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</cites><orcidid>0000-0001-7590-8409 ; 0000-0002-8145-5909 ; 0000-0003-3803-0128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8620275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8620275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Ying Ying</creatorcontrib><creatorcontrib>Nakagawa, Hiroshi</creatorcontrib><creatorcontrib>Hashino, Masaru</creatorcontrib><creatorcontrib>Aoyagi, Masahiro</creatorcontrib><creatorcontrib>Kikuchi, Katsuya</creatorcontrib><title>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.</description><subject>Bonding</subject><subject>Cone-shaped bumps</subject><subject>Density</subject><subject>Electronic packaging</subject><subject>Gold</subject><subject>Hardness</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>Large scale integration</subject><subject>Mechanical properties</subject><subject>nanoparticle deposition (NPD)</subject><subject>Nanoparticles</subject><subject>Packaging</subject><subject>Resists</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEtPYH4BLJM4d-Wia9DjKx5CGmESRuEVemmwdW1uS9sC_J2NovtiW_Np-H4SuKZlSSvK7sli-llNGaD5lKueMszM0YlRkCc-VOD_VglyiSQhbEkMoIgkfoc85-KqxIeBiAx5Mb30d-toE3Do8G3DRNjZ530BnK3w_7LuAS_Br28fWtR7z5AEvwXzBum7WeNZ1u9pAX7dNuEIXDnbBTv7zGH08PZbFPFm8Pb8Us0VieEb7RKiMibSiwhG-ypWDzBLIKivByYwIooATahSVipq04sbJFTXRo4OVkVV0O0a3x72db78HG3q9bQffxJOa0ZyyLE1TGafYccr4NgRvne58vQf_oynRB4j6D6I-QNT_EKPo5iiqrbUnQXyYMCn4L8dGbJw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Lim, Ying Ying</creator><creator>Nakagawa, Hiroshi</creator><creator>Hashino, Masaru</creator><creator>Aoyagi, Masahiro</creator><creator>Kikuchi, Katsuya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7590-8409</orcidid><orcidid>https://orcid.org/0000-0002-8145-5909</orcidid><orcidid>https://orcid.org/0000-0003-3803-0128</orcidid></search><sort><creationdate>20190301</creationdate><title>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</title><author>Lim, Ying Ying ; Nakagawa, Hiroshi ; Hashino, Masaru ; Aoyagi, Masahiro ; Kikuchi, Katsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding</topic><topic>Cone-shaped bumps</topic><topic>Density</topic><topic>Electronic packaging</topic><topic>Gold</topic><topic>Hardness</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>Large scale integration</topic><topic>Mechanical properties</topic><topic>nanoparticle deposition (NPD)</topic><topic>Nanoparticles</topic><topic>Packaging</topic><topic>Resists</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Ying Ying</creatorcontrib><creatorcontrib>Nakagawa, Hiroshi</creatorcontrib><creatorcontrib>Hashino, Masaru</creatorcontrib><creatorcontrib>Aoyagi, Masahiro</creatorcontrib><creatorcontrib>Kikuchi, Katsuya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Ying Ying</au><au>Nakagawa, Hiroshi</au><au>Hashino, Masaru</au><au>Aoyagi, Masahiro</au><au>Kikuchi, Katsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2019.2893232</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7590-8409</orcidid><orcidid>https://orcid.org/0000-0002-8145-5909</orcidid><orcidid>https://orcid.org/0000-0003-3803-0128</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2019-03, Vol.9 (3), p.419-426
issn 2156-3950
2156-3985
language eng
recordid cdi_proquest_journals_2191264447
source IEEE Electronic Library (IEL)
subjects Bonding
Cone-shaped bumps
Density
Electronic packaging
Gold
Hardness
Integrated circuits
Interconnections
Large scale integration
Mechanical properties
nanoparticle deposition (NPD)
Nanoparticles
Packaging
Resists
Silicon
Substrates
Temperature
Temperature dependence
Temperature effects
title Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20Characteristics%20of%20Au%20Cone-Shaped%20Bumps%20Targeted%20for%203-D%20Packaging%20Applications&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Lim,%20Ying%20Ying&rft.date=2019-03-01&rft.volume=9&rft.issue=3&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2019.2893232&rft_dat=%3Cproquest_RIE%3E2191264447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191264447&rft_id=info:pmid/&rft_ieee_id=8620275&rfr_iscdi=true