Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications
Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanopa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2019-03, Vol.9 (3), p.419-426 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 3 |
container_start_page | 419 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 9 |
creator | Lim, Ying Ying Nakagawa, Hiroshi Hashino, Masaru Aoyagi, Masahiro Kikuchi, Katsuya |
description | Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding. |
doi_str_mv | 10.1109/TCPMT.2019.2893232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191264447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8620275</ieee_id><sourcerecordid>2191264447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEtPYH4BLJM4d-Wia9DjKx5CGmESRuEVemmwdW1uS9sC_J2NovtiW_Np-H4SuKZlSSvK7sli-llNGaD5lKueMszM0YlRkCc-VOD_VglyiSQhbEkMoIgkfoc85-KqxIeBiAx5Mb30d-toE3Do8G3DRNjZ530BnK3w_7LuAS_Br28fWtR7z5AEvwXzBum7WeNZ1u9pAX7dNuEIXDnbBTv7zGH08PZbFPFm8Pb8Us0VieEb7RKiMibSiwhG-ypWDzBLIKivByYwIooATahSVipq04sbJFTXRo4OVkVV0O0a3x72db78HG3q9bQffxJOa0ZyyLE1TGafYccr4NgRvne58vQf_oynRB4j6D6I-QNT_EKPo5iiqrbUnQXyYMCn4L8dGbJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191264447</pqid></control><display><type>article</type><title>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Ying Ying ; Nakagawa, Hiroshi ; Hashino, Masaru ; Aoyagi, Masahiro ; Kikuchi, Katsuya</creator><creatorcontrib>Lim, Ying Ying ; Nakagawa, Hiroshi ; Hashino, Masaru ; Aoyagi, Masahiro ; Kikuchi, Katsuya</creatorcontrib><description>Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2019.2893232</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bonding ; Cone-shaped bumps ; Density ; Electronic packaging ; Gold ; Hardness ; Integrated circuits ; Interconnections ; Large scale integration ; Mechanical properties ; nanoparticle deposition (NPD) ; Nanoparticles ; Packaging ; Resists ; Silicon ; Substrates ; Temperature ; Temperature dependence ; Temperature effects</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2019-03, Vol.9 (3), p.419-426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</citedby><cites>FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</cites><orcidid>0000-0001-7590-8409 ; 0000-0002-8145-5909 ; 0000-0003-3803-0128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8620275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8620275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Ying Ying</creatorcontrib><creatorcontrib>Nakagawa, Hiroshi</creatorcontrib><creatorcontrib>Hashino, Masaru</creatorcontrib><creatorcontrib>Aoyagi, Masahiro</creatorcontrib><creatorcontrib>Kikuchi, Katsuya</creatorcontrib><title>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.</description><subject>Bonding</subject><subject>Cone-shaped bumps</subject><subject>Density</subject><subject>Electronic packaging</subject><subject>Gold</subject><subject>Hardness</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>Large scale integration</subject><subject>Mechanical properties</subject><subject>nanoparticle deposition (NPD)</subject><subject>Nanoparticles</subject><subject>Packaging</subject><subject>Resists</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEtPYH4BLJM4d-Wia9DjKx5CGmESRuEVemmwdW1uS9sC_J2NovtiW_Np-H4SuKZlSSvK7sli-llNGaD5lKueMszM0YlRkCc-VOD_VglyiSQhbEkMoIgkfoc85-KqxIeBiAx5Mb30d-toE3Do8G3DRNjZ530BnK3w_7LuAS_Br28fWtR7z5AEvwXzBum7WeNZ1u9pAX7dNuEIXDnbBTv7zGH08PZbFPFm8Pb8Us0VieEb7RKiMibSiwhG-ypWDzBLIKivByYwIooATahSVipq04sbJFTXRo4OVkVV0O0a3x72db78HG3q9bQffxJOa0ZyyLE1TGafYccr4NgRvne58vQf_oynRB4j6D6I-QNT_EKPo5iiqrbUnQXyYMCn4L8dGbJw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Lim, Ying Ying</creator><creator>Nakagawa, Hiroshi</creator><creator>Hashino, Masaru</creator><creator>Aoyagi, Masahiro</creator><creator>Kikuchi, Katsuya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7590-8409</orcidid><orcidid>https://orcid.org/0000-0002-8145-5909</orcidid><orcidid>https://orcid.org/0000-0003-3803-0128</orcidid></search><sort><creationdate>20190301</creationdate><title>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</title><author>Lim, Ying Ying ; Nakagawa, Hiroshi ; Hashino, Masaru ; Aoyagi, Masahiro ; Kikuchi, Katsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-586254d15f03b98fa6e0a6de7af760508a301c81781c4d3cf7b1c932fabc7d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding</topic><topic>Cone-shaped bumps</topic><topic>Density</topic><topic>Electronic packaging</topic><topic>Gold</topic><topic>Hardness</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>Large scale integration</topic><topic>Mechanical properties</topic><topic>nanoparticle deposition (NPD)</topic><topic>Nanoparticles</topic><topic>Packaging</topic><topic>Resists</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Ying Ying</creatorcontrib><creatorcontrib>Nakagawa, Hiroshi</creatorcontrib><creatorcontrib>Hashino, Masaru</creatorcontrib><creatorcontrib>Aoyagi, Masahiro</creatorcontrib><creatorcontrib>Kikuchi, Katsuya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Ying Ying</au><au>Nakagawa, Hiroshi</au><au>Hashino, Masaru</au><au>Aoyagi, Masahiro</au><au>Kikuchi, Katsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Three-dimensional large scale integration (3D-LSI) packaging is crucial toward obtaining increased circuit density within a small footprint. In a 3D-LSI package, chip-to-chip interconnection is typically obtained using through-silicon vias and microbumps. In particular, microbumps realized by nanoparticle deposition (NPD) are promising to obtain high-density interconnections. However, the effect of temperature on the mechanical properties (i.e., hardness) of NPD bumps is little understood. This paper seeks to investigate the influence of temperature on the hardness of NPD bumps, with reference to NPD films. The results obtained suggest a significant reduction in the NPD bump hardness from room temperature to 200 °C. In particular, the hardness was observed to be mainly dependent on temperature rather than grain size, as the grain microstructures obtained at room temperature and 200 °C are similar. Overall, these results suggest a simple approach to control the NPD bump compression during flip-chip bonding, where the hardness-temperature data for the NPD bumps suffices to estimate for the bump compression during flip-chip bonding.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2019.2893232</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7590-8409</orcidid><orcidid>https://orcid.org/0000-0002-8145-5909</orcidid><orcidid>https://orcid.org/0000-0003-3803-0128</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2019-03, Vol.9 (3), p.419-426 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_proquest_journals_2191264447 |
source | IEEE Electronic Library (IEL) |
subjects | Bonding Cone-shaped bumps Density Electronic packaging Gold Hardness Integrated circuits Interconnections Large scale integration Mechanical properties nanoparticle deposition (NPD) Nanoparticles Packaging Resists Silicon Substrates Temperature Temperature dependence Temperature effects |
title | Hardness Characteristics of Au Cone-Shaped Bumps Targeted for 3-D Packaging Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardness%20Characteristics%20of%20Au%20Cone-Shaped%20Bumps%20Targeted%20for%203-D%20Packaging%20Applications&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Lim,%20Ying%20Ying&rft.date=2019-03-01&rft.volume=9&rft.issue=3&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2019.2893232&rft_dat=%3Cproquest_RIE%3E2191264447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191264447&rft_id=info:pmid/&rft_ieee_id=8620275&rfr_iscdi=true |