Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design
Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchma...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2019-03, Vol.18 (3), p.1723-1738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1738 |
---|---|
container_issue | 3 |
container_start_page | 1723 |
container_title | IEEE transactions on wireless communications |
container_volume | 18 |
creator | Javed, Sidrah Amin, Osama Ikki, Salama S. Alouini, Mohamed-Slim |
description | Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation. |
doi_str_mv | 10.1109/TWC.2019.2896058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191260245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8636532</ieee_id><sourcerecordid>2191260245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJsdTWFiqKVjyG7GZWUvajJltl_71bWjzNwPu8w_AgdEvJhFKiHzafswkjVE-Y0pIIdYZGVAiVMJaq88POZUJZJi_RVYxbQmgmhRihfBr7uoYu-AI_t25f2c63DS7bgJc2uF8bAK_qnfUBHH7vYwd1TOYhDPlraHOb-8p3PZ42tuqjj9g2Dr9BAf4HAn6E6L-aa3RR2irCzWmO0cdivpktk_XL02o2XScF07RLVMpYlmWSl45wQaggqc6FJNal3OrMUQtDokorwImCZyUHzVPrSFpKorTlY3R_vLsL7fceYme27T4Mj0XDqKZMEpaKgSJHqghtjAFKswu-tqE3lJiDSTOYNAeT5mRyqNwdKx4A_nEluRSc8T-NsG-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191260245</pqid></control><display><type>article</type><title>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</title><source>IEEE Electronic Library (IEL)</source><creator>Javed, Sidrah ; Amin, Osama ; Ikki, Salama S. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Javed, Sidrah ; Amin, Osama ; Ikki, Salama S. ; Alouini, Mohamed-Slim</creatorcontrib><description>Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2896058</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Asymmetric modulation ; Asymmetry ; Bit error rate ; Codes ; Distortion ; Error analysis ; Error probability ; error probability analysis ; Error reduction ; Euclidean geometry ; Hardware ; hardware impairments ; improper Gaussian signaling ; in-phase and quadrature-phase imbalance ; Mathematical models ; Modulation ; optimal receiver and self-interfering signals ; Optimization ; Receivers ; Signal transmission ; Transmitters</subject><ispartof>IEEE transactions on wireless communications, 2019-03, Vol.18 (3), p.1723-1738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</citedby><cites>FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</cites><orcidid>0000-0002-0026-5960 ; 0000-0002-3385-3427 ; 0000-0003-4827-1793 ; 0000-0003-3868-4447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8636532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8636532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Javed, Sidrah</creatorcontrib><creatorcontrib>Amin, Osama</creatorcontrib><creatorcontrib>Ikki, Salama S.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.</description><subject>Additives</subject><subject>Asymmetric modulation</subject><subject>Asymmetry</subject><subject>Bit error rate</subject><subject>Codes</subject><subject>Distortion</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>error probability analysis</subject><subject>Error reduction</subject><subject>Euclidean geometry</subject><subject>Hardware</subject><subject>hardware impairments</subject><subject>improper Gaussian signaling</subject><subject>in-phase and quadrature-phase imbalance</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>optimal receiver and self-interfering signals</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Signal transmission</subject><subject>Transmitters</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJsdTWFiqKVjyG7GZWUvajJltl_71bWjzNwPu8w_AgdEvJhFKiHzafswkjVE-Y0pIIdYZGVAiVMJaq88POZUJZJi_RVYxbQmgmhRihfBr7uoYu-AI_t25f2c63DS7bgJc2uF8bAK_qnfUBHH7vYwd1TOYhDPlraHOb-8p3PZ42tuqjj9g2Dr9BAf4HAn6E6L-aa3RR2irCzWmO0cdivpktk_XL02o2XScF07RLVMpYlmWSl45wQaggqc6FJNal3OrMUQtDokorwImCZyUHzVPrSFpKorTlY3R_vLsL7fceYme27T4Mj0XDqKZMEpaKgSJHqghtjAFKswu-tqE3lJiDSTOYNAeT5mRyqNwdKx4A_nEluRSc8T-NsG-g</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Javed, Sidrah</creator><creator>Amin, Osama</creator><creator>Ikki, Salama S.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0026-5960</orcidid><orcidid>https://orcid.org/0000-0002-3385-3427</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0003-3868-4447</orcidid></search><sort><creationdate>201903</creationdate><title>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</title><author>Javed, Sidrah ; Amin, Osama ; Ikki, Salama S. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additives</topic><topic>Asymmetric modulation</topic><topic>Asymmetry</topic><topic>Bit error rate</topic><topic>Codes</topic><topic>Distortion</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>error probability analysis</topic><topic>Error reduction</topic><topic>Euclidean geometry</topic><topic>Hardware</topic><topic>hardware impairments</topic><topic>improper Gaussian signaling</topic><topic>in-phase and quadrature-phase imbalance</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>optimal receiver and self-interfering signals</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Signal transmission</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Sidrah</creatorcontrib><creatorcontrib>Amin, Osama</creatorcontrib><creatorcontrib>Ikki, Salama S.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Javed, Sidrah</au><au>Amin, Osama</au><au>Ikki, Salama S.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2019-03</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>1723</spage><epage>1738</epage><pages>1723-1738</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2896058</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0026-5960</orcidid><orcidid>https://orcid.org/0000-0002-3385-3427</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0003-3868-4447</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2019-03, Vol.18 (3), p.1723-1738 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2191260245 |
source | IEEE Electronic Library (IEL) |
subjects | Additives Asymmetric modulation Asymmetry Bit error rate Codes Distortion Error analysis Error probability error probability analysis Error reduction Euclidean geometry Hardware hardware impairments improper Gaussian signaling in-phase and quadrature-phase imbalance Mathematical models Modulation optimal receiver and self-interfering signals Optimization Receivers Signal transmission Transmitters |
title | Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Modulation%20for%20Hardware%20Impaired%20Systems-Error%20Probability%20Analysis%20and%20Receiver%20Design&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Javed,%20Sidrah&rft.date=2019-03&rft.volume=18&rft.issue=3&rft.spage=1723&rft.epage=1738&rft.pages=1723-1738&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2896058&rft_dat=%3Cproquest_RIE%3E2191260245%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191260245&rft_id=info:pmid/&rft_ieee_id=8636532&rfr_iscdi=true |