Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design

Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2019-03, Vol.18 (3), p.1723-1738
Hauptverfasser: Javed, Sidrah, Amin, Osama, Ikki, Salama S., Alouini, Mohamed-Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1738
container_issue 3
container_start_page 1723
container_title IEEE transactions on wireless communications
container_volume 18
creator Javed, Sidrah
Amin, Osama
Ikki, Salama S.
Alouini, Mohamed-Slim
description Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.
doi_str_mv 10.1109/TWC.2019.2896058
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191260245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8636532</ieee_id><sourcerecordid>2191260245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJsdTWFiqKVjyG7GZWUvajJltl_71bWjzNwPu8w_AgdEvJhFKiHzafswkjVE-Y0pIIdYZGVAiVMJaq88POZUJZJi_RVYxbQmgmhRihfBr7uoYu-AI_t25f2c63DS7bgJc2uF8bAK_qnfUBHH7vYwd1TOYhDPlraHOb-8p3PZ42tuqjj9g2Dr9BAf4HAn6E6L-aa3RR2irCzWmO0cdivpktk_XL02o2XScF07RLVMpYlmWSl45wQaggqc6FJNal3OrMUQtDokorwImCZyUHzVPrSFpKorTlY3R_vLsL7fceYme27T4Mj0XDqKZMEpaKgSJHqghtjAFKswu-tqE3lJiDSTOYNAeT5mRyqNwdKx4A_nEluRSc8T-NsG-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191260245</pqid></control><display><type>article</type><title>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</title><source>IEEE Electronic Library (IEL)</source><creator>Javed, Sidrah ; Amin, Osama ; Ikki, Salama S. ; Alouini, Mohamed-Slim</creator><creatorcontrib>Javed, Sidrah ; Amin, Osama ; Ikki, Salama S. ; Alouini, Mohamed-Slim</creatorcontrib><description>Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2896058</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Asymmetric modulation ; Asymmetry ; Bit error rate ; Codes ; Distortion ; Error analysis ; Error probability ; error probability analysis ; Error reduction ; Euclidean geometry ; Hardware ; hardware impairments ; improper Gaussian signaling ; in-phase and quadrature-phase imbalance ; Mathematical models ; Modulation ; optimal receiver and self-interfering signals ; Optimization ; Receivers ; Signal transmission ; Transmitters</subject><ispartof>IEEE transactions on wireless communications, 2019-03, Vol.18 (3), p.1723-1738</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</citedby><cites>FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</cites><orcidid>0000-0002-0026-5960 ; 0000-0002-3385-3427 ; 0000-0003-4827-1793 ; 0000-0003-3868-4447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8636532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8636532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Javed, Sidrah</creatorcontrib><creatorcontrib>Amin, Osama</creatorcontrib><creatorcontrib>Ikki, Salama S.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><title>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.</description><subject>Additives</subject><subject>Asymmetric modulation</subject><subject>Asymmetry</subject><subject>Bit error rate</subject><subject>Codes</subject><subject>Distortion</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>error probability analysis</subject><subject>Error reduction</subject><subject>Euclidean geometry</subject><subject>Hardware</subject><subject>hardware impairments</subject><subject>improper Gaussian signaling</subject><subject>in-phase and quadrature-phase imbalance</subject><subject>Mathematical models</subject><subject>Modulation</subject><subject>optimal receiver and self-interfering signals</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Signal transmission</subject><subject>Transmitters</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bLLJsdTWFiqKVjyG7GZWUvajJltl_71bWjzNwPu8w_AgdEvJhFKiHzafswkjVE-Y0pIIdYZGVAiVMJaq88POZUJZJi_RVYxbQmgmhRihfBr7uoYu-AI_t25f2c63DS7bgJc2uF8bAK_qnfUBHH7vYwd1TOYhDPlraHOb-8p3PZ42tuqjj9g2Dr9BAf4HAn6E6L-aa3RR2irCzWmO0cdivpktk_XL02o2XScF07RLVMpYlmWSl45wQaggqc6FJNal3OrMUQtDokorwImCZyUHzVPrSFpKorTlY3R_vLsL7fceYme27T4Mj0XDqKZMEpaKgSJHqghtjAFKswu-tqE3lJiDSTOYNAeT5mRyqNwdKx4A_nEluRSc8T-NsG-g</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Javed, Sidrah</creator><creator>Amin, Osama</creator><creator>Ikki, Salama S.</creator><creator>Alouini, Mohamed-Slim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0026-5960</orcidid><orcidid>https://orcid.org/0000-0002-3385-3427</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0003-3868-4447</orcidid></search><sort><creationdate>201903</creationdate><title>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</title><author>Javed, Sidrah ; Amin, Osama ; Ikki, Salama S. ; Alouini, Mohamed-Slim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-842277763fd035015049b560ad43a97d1aefd08fa5ed5c37f3e934ad04f6089a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additives</topic><topic>Asymmetric modulation</topic><topic>Asymmetry</topic><topic>Bit error rate</topic><topic>Codes</topic><topic>Distortion</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>error probability analysis</topic><topic>Error reduction</topic><topic>Euclidean geometry</topic><topic>Hardware</topic><topic>hardware impairments</topic><topic>improper Gaussian signaling</topic><topic>in-phase and quadrature-phase imbalance</topic><topic>Mathematical models</topic><topic>Modulation</topic><topic>optimal receiver and self-interfering signals</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Signal transmission</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Javed, Sidrah</creatorcontrib><creatorcontrib>Amin, Osama</creatorcontrib><creatorcontrib>Ikki, Salama S.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Javed, Sidrah</au><au>Amin, Osama</au><au>Ikki, Salama S.</au><au>Alouini, Mohamed-Slim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2019-03</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>1723</spage><epage>1738</epage><pages>1723-1738</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Error probability study of hardware impaired (HWI) systems highly depends on the adopted model. Considering the distinct improper Gaussian features of HWI systems, captured by recent models, HWI-aware receivers are designed. An optimal maximum likelihood (ML) receiver serves as a performance benchmark, and a sub-optimal linear minimum mean square error introduces a reduced-complexity implementation. Whereas, the conventional HWI-unaware minimum Euclidean distance receiver, based on the proper noise assumption, exhibits substandard performance. Next, the average error probability of the proposed optimal ML-receiver is analyzed, where several tight bounds and approximations are derived for various HWI systems. Motivated by the benefit of improper Gaussian signaling in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted and optimized for transmission. The numerical results demonstrate a bit error rate (BER) reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers. Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These results signify the importance of incorporating accurate HWI models, designing appropriate receivers and optimizing signal transmission for the BER performance compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2896058</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0026-5960</orcidid><orcidid>https://orcid.org/0000-0002-3385-3427</orcidid><orcidid>https://orcid.org/0000-0003-4827-1793</orcidid><orcidid>https://orcid.org/0000-0003-3868-4447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2019-03, Vol.18 (3), p.1723-1738
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2191260245
source IEEE Electronic Library (IEL)
subjects Additives
Asymmetric modulation
Asymmetry
Bit error rate
Codes
Distortion
Error analysis
Error probability
error probability analysis
Error reduction
Euclidean geometry
Hardware
hardware impairments
improper Gaussian signaling
in-phase and quadrature-phase imbalance
Mathematical models
Modulation
optimal receiver and self-interfering signals
Optimization
Receivers
Signal transmission
Transmitters
title Asymmetric Modulation for Hardware Impaired Systems-Error Probability Analysis and Receiver Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Modulation%20for%20Hardware%20Impaired%20Systems-Error%20Probability%20Analysis%20and%20Receiver%20Design&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Javed,%20Sidrah&rft.date=2019-03&rft.volume=18&rft.issue=3&rft.spage=1723&rft.epage=1738&rft.pages=1723-1738&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2896058&rft_dat=%3Cproquest_RIE%3E2191260245%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191260245&rft_id=info:pmid/&rft_ieee_id=8636532&rfr_iscdi=true