A Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU
We introduce Hybrid-Dbscan , that uses the GPU and CPUs for optimizing clustering throughput. The main idea is to exploit the memory bandwidth on the GPU for fast index searches, and optimize data transfers between host and GPU, to alleviate the potential negative performance impact of the PCIe inte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2019-04, Vol.30 (4), p.766-777 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 777 |
---|---|
container_issue | 4 |
container_start_page | 766 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 30 |
creator | Gowanlock, Michael Rude, Cody M. Blair, David M. Li, Justin D. Pankratius, Victor |
description | We introduce Hybrid-Dbscan , that uses the GPU and CPUs for optimizing clustering throughput. The main idea is to exploit the memory bandwidth on the GPU for fast index searches, and optimize data transfers between host and GPU, to alleviate the potential negative performance impact of the PCIe interconnect. We propose and compare two GPU kernels that exploit grid-based indexing schemes to improve neighborhood search performance. We employ a batching scheme for host-GPU data transfers to obviate limited GPU memory, and exploit concurrent operations on the host and GPU. This scheme is robust with respect to both sparse and dense data distributions and avoids buffer overflows that would otherwise degrade performance. We evaluate our approaches on ionospheric total electron content datasets as well as intermediate-redshift galaxies from the Sloan Digital Sky Survey. Hybrid-Dbscan outperforms the reference implementation across a range of application scenarios, including small workloads, which typically are the domain of CPU-only algorithms. We advance an empirical response time performance model of Hybrid-Dbscan by utilizing the underlying properties of the datasets. With only a single execution of Hybrid-Dbscan on a dataset, we are able to accurately predict the response time for a range of \epsilon ε ε search distances. |
doi_str_mv | 10.1109/TPDS.2018.2869777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191259648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8462789</ieee_id><sourcerecordid>2191259648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-17c73a1a062f5925549a418655d596a2f10eb8a558ef60496140b8900c12ee2e3</originalsourceid><addsrcrecordid>eNo9UMtuwjAQtKpWKn18QNWLpZ5DvY7t2EdEW6hEBVLhbJmwgaBAUjs50K-vI1BPuxrNzM4OIU_AhgDMvC4Xb99DzkAPuVYmy7IrMgApdcJBp9dxZ0ImhoO5JXch7BkDIZkYkK8RnZ7WvtzQUdP42uU7WtSezpu2PJS_5XFLF867qsKKjqsutOh7bLnzdbfdNV1Lu9AD7Q7pZLF6IDeFqwI-XuY9WX28L8fTZDaffI5HsyRPU9UmkOVZ6sAxxQtpuJTCOAFaSbmRRjleAMO1djE-FooJo0CwtTaM5cAROab35OXsGyP_dBhau687f4wnbXwReHQROrLgzMp9HYLHwja-PDh_ssBs35rtW7N9a_bSWtQ8nzUlIv7ztVA80yb9A6xDZws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191259648</pqid></control><display><type>article</type><title>A Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU</title><source>IEEE Electronic Library (IEL)</source><creator>Gowanlock, Michael ; Rude, Cody M. ; Blair, David M. ; Li, Justin D. ; Pankratius, Victor</creator><creatorcontrib>Gowanlock, Michael ; Rude, Cody M. ; Blair, David M. ; Li, Justin D. ; Pankratius, Victor</creatorcontrib><description><![CDATA[We introduce Hybrid-Dbscan , that uses the GPU and CPUs for optimizing clustering throughput. The main idea is to exploit the memory bandwidth on the GPU for fast index searches, and optimize data transfers between host and GPU, to alleviate the potential negative performance impact of the PCIe interconnect. We propose and compare two GPU kernels that exploit grid-based indexing schemes to improve neighborhood search performance. We employ a batching scheme for host-GPU data transfers to obviate limited GPU memory, and exploit concurrent operations on the host and GPU. This scheme is robust with respect to both sparse and dense data distributions and avoids buffer overflows that would otherwise degrade performance. We evaluate our approaches on ionospheric total electron content datasets as well as intermediate-redshift galaxies from the Sloan Digital Sky Survey. Hybrid-Dbscan outperforms the reference implementation across a range of application scenarios, including small workloads, which typically are the domain of CPU-only algorithms. We advance an empirical response time performance model of Hybrid-Dbscan by utilizing the underlying properties of the datasets. With only a single execution of Hybrid-Dbscan on a dataset, we are able to accurately predict the response time for a range of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math> <mml:math> <mml:mi>ε</mml:mi> </mml:math> <inline-graphic xlink:href="gowanlock-ieq1-2869777.gif"/> <mml:math> <mml:mi>ε</mml:mi> </mml:math> <inline-graphic xlink:href="gowanlock-ieq1-2869777.gif"/> </inline-formula> search distances.]]></description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2018.2869777</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Datasets ; DBSCAN ; Galaxies ; GPGPU ; Graphics processing units ; in-memory database ; Indexing ; Kernel ; Optimization ; parallel clustering ; Performance degradation ; query optimization ; Red shift ; Response time (computers) ; Sky surveys (astronomy) ; spatial databases ; Throughput ; Time factors</subject><ispartof>IEEE transactions on parallel and distributed systems, 2019-04, Vol.30 (4), p.766-777</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-17c73a1a062f5925549a418655d596a2f10eb8a558ef60496140b8900c12ee2e3</citedby><cites>FETCH-LOGICAL-c336t-17c73a1a062f5925549a418655d596a2f10eb8a558ef60496140b8900c12ee2e3</cites><orcidid>0000-0002-9584-2600 ; 0000-0002-0826-6204 ; 0000-0003-3315-2038 ; 0000-0002-4658-6583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8462789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8462789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gowanlock, Michael</creatorcontrib><creatorcontrib>Rude, Cody M.</creatorcontrib><creatorcontrib>Blair, David M.</creatorcontrib><creatorcontrib>Li, Justin D.</creatorcontrib><creatorcontrib>Pankratius, Victor</creatorcontrib><title>A Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description><![CDATA[We introduce Hybrid-Dbscan , that uses the GPU and CPUs for optimizing clustering throughput. The main idea is to exploit the memory bandwidth on the GPU for fast index searches, and optimize data transfers between host and GPU, to alleviate the potential negative performance impact of the PCIe interconnect. We propose and compare two GPU kernels that exploit grid-based indexing schemes to improve neighborhood search performance. We employ a batching scheme for host-GPU data transfers to obviate limited GPU memory, and exploit concurrent operations on the host and GPU. This scheme is robust with respect to both sparse and dense data distributions and avoids buffer overflows that would otherwise degrade performance. We evaluate our approaches on ionospheric total electron content datasets as well as intermediate-redshift galaxies from the Sloan Digital Sky Survey. Hybrid-Dbscan outperforms the reference implementation across a range of application scenarios, including small workloads, which typically are the domain of CPU-only algorithms. We advance an empirical response time performance model of Hybrid-Dbscan by utilizing the underlying properties of the datasets. With only a single execution of Hybrid-Dbscan on a dataset, we are able to accurately predict the response time for a range of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math> <mml:math> <mml:mi>ε</mml:mi> </mml:math> <inline-graphic xlink:href="gowanlock-ieq1-2869777.gif"/> <mml:math> <mml:mi>ε</mml:mi> </mml:math> <inline-graphic xlink:href="gowanlock-ieq1-2869777.gif"/> </inline-formula> search distances.]]></description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Datasets</subject><subject>DBSCAN</subject><subject>Galaxies</subject><subject>GPGPU</subject><subject>Graphics processing units</subject><subject>in-memory database</subject><subject>Indexing</subject><subject>Kernel</subject><subject>Optimization</subject><subject>parallel clustering</subject><subject>Performance degradation</subject><subject>query optimization</subject><subject>Red shift</subject><subject>Response time (computers)</subject><subject>Sky surveys (astronomy)</subject><subject>spatial databases</subject><subject>Throughput</subject><subject>Time factors</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtuwjAQtKpWKn18QNWLpZ5DvY7t2EdEW6hEBVLhbJmwgaBAUjs50K-vI1BPuxrNzM4OIU_AhgDMvC4Xb99DzkAPuVYmy7IrMgApdcJBp9dxZ0ImhoO5JXch7BkDIZkYkK8RnZ7WvtzQUdP42uU7WtSezpu2PJS_5XFLF867qsKKjqsutOh7bLnzdbfdNV1Lu9AD7Q7pZLF6IDeFqwI-XuY9WX28L8fTZDaffI5HsyRPU9UmkOVZ6sAxxQtpuJTCOAFaSbmRRjleAMO1djE-FooJo0CwtTaM5cAROab35OXsGyP_dBhau687f4wnbXwReHQROrLgzMp9HYLHwja-PDh_ssBs35rtW7N9a_bSWtQ8nzUlIv7ztVA80yb9A6xDZws</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Gowanlock, Michael</creator><creator>Rude, Cody M.</creator><creator>Blair, David M.</creator><creator>Li, Justin D.</creator><creator>Pankratius, Victor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9584-2600</orcidid><orcidid>https://orcid.org/0000-0002-0826-6204</orcidid><orcidid>https://orcid.org/0000-0003-3315-2038</orcidid><orcidid>https://orcid.org/0000-0002-4658-6583</orcidid></search><sort><creationdate>20190401</creationdate><title>A Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU</title><author>Gowanlock, Michael ; Rude, Cody M. ; Blair, David M. ; Li, Justin D. ; Pankratius, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-17c73a1a062f5925549a418655d596a2f10eb8a558ef60496140b8900c12ee2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Datasets</topic><topic>DBSCAN</topic><topic>Galaxies</topic><topic>GPGPU</topic><topic>Graphics processing units</topic><topic>in-memory database</topic><topic>Indexing</topic><topic>Kernel</topic><topic>Optimization</topic><topic>parallel clustering</topic><topic>Performance degradation</topic><topic>query optimization</topic><topic>Red shift</topic><topic>Response time (computers)</topic><topic>Sky surveys (astronomy)</topic><topic>spatial databases</topic><topic>Throughput</topic><topic>Time factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowanlock, Michael</creatorcontrib><creatorcontrib>Rude, Cody M.</creatorcontrib><creatorcontrib>Blair, David M.</creatorcontrib><creatorcontrib>Li, Justin D.</creatorcontrib><creatorcontrib>Pankratius, Victor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gowanlock, Michael</au><au>Rude, Cody M.</au><au>Blair, David M.</au><au>Li, Justin D.</au><au>Pankratius, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>4</issue><spage>766</spage><epage>777</epage><pages>766-777</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract><![CDATA[We introduce Hybrid-Dbscan , that uses the GPU and CPUs for optimizing clustering throughput. The main idea is to exploit the memory bandwidth on the GPU for fast index searches, and optimize data transfers between host and GPU, to alleviate the potential negative performance impact of the PCIe interconnect. We propose and compare two GPU kernels that exploit grid-based indexing schemes to improve neighborhood search performance. We employ a batching scheme for host-GPU data transfers to obviate limited GPU memory, and exploit concurrent operations on the host and GPU. This scheme is robust with respect to both sparse and dense data distributions and avoids buffer overflows that would otherwise degrade performance. We evaluate our approaches on ionospheric total electron content datasets as well as intermediate-redshift galaxies from the Sloan Digital Sky Survey. Hybrid-Dbscan outperforms the reference implementation across a range of application scenarios, including small workloads, which typically are the domain of CPU-only algorithms. We advance an empirical response time performance model of Hybrid-Dbscan by utilizing the underlying properties of the datasets. With only a single execution of Hybrid-Dbscan on a dataset, we are able to accurately predict the response time for a range of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math> <mml:math> <mml:mi>ε</mml:mi> </mml:math> <inline-graphic xlink:href="gowanlock-ieq1-2869777.gif"/> <mml:math> <mml:mi>ε</mml:mi> </mml:math> <inline-graphic xlink:href="gowanlock-ieq1-2869777.gif"/> </inline-formula> search distances.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2018.2869777</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9584-2600</orcidid><orcidid>https://orcid.org/0000-0002-0826-6204</orcidid><orcidid>https://orcid.org/0000-0003-3315-2038</orcidid><orcidid>https://orcid.org/0000-0002-4658-6583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2019-04, Vol.30 (4), p.766-777 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_proquest_journals_2191259648 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering Clustering algorithms Datasets DBSCAN Galaxies GPGPU Graphics processing units in-memory database Indexing Kernel Optimization parallel clustering Performance degradation query optimization Red shift Response time (computers) Sky surveys (astronomy) spatial databases Throughput Time factors |
title | A Hybrid Approach for Optimizing Parallel Clustering Throughput using the GPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Approach%20for%20Optimizing%20Parallel%20Clustering%20Throughput%20using%20the%20GPU&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Gowanlock,%20Michael&rft.date=2019-04-01&rft.volume=30&rft.issue=4&rft.spage=766&rft.epage=777&rft.pages=766-777&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2018.2869777&rft_dat=%3Cproquest_RIE%3E2191259648%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191259648&rft_id=info:pmid/&rft_ieee_id=8462789&rfr_iscdi=true |