Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation
In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2019-03, Vol.16 (1), p.27-40 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | IEEE eTransactions on network and service management |
container_volume | 16 |
creator | Otokura, Mari Leibnitz, Kenji Koizumi, Yuki Kominami, Daichi Shimokawa, Tetsuya Murata, Masayuki |
description | In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%. |
doi_str_mv | 10.1109/TNSM.2018.2890273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191150748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598769</ieee_id><sourcerecordid>2191150748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2apB_J8U7GpsI2B07Bq5CmCetsm5m2E_-9LRvi1Xsu3uecw4PQNSUhpQTu1svXRcgIFSETQBiPTtCIQsSCOIn46b_5HF00zZaQRFBgI_Qx3btyr7LS4PfCt50q8dK0385_4llX67ZwNV6VSpvK1C1emHbj8vs-9UbVRVNhVed4Zbx1vlK1Nni6V2WnBuwSnVlVNubqmGP0NpuuJ0_B_OXxefIwDzSDqA2AJ1arjCoFicm5jjOSEqbTOLcAHDQwS0T_rqU2ixnjaaqVEFonKqc25xCN0e1h7867r840rdy6ztf9SckoUJoQHou-RQ8t7V3TeGPlzheV8j-SEjkYlINBORiUR4M9c3NgCmPMX18kIHgK0S9Fd22s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191150748</pqid></control><display><type>article</type><title>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Otokura, Mari ; Leibnitz, Kenji ; Koizumi, Yuki ; Kominami, Daichi ; Shimokawa, Tetsuya ; Murata, Masayuki</creator><creatorcontrib>Otokura, Mari ; Leibnitz, Kenji ; Koizumi, Yuki ; Kominami, Daichi ; Shimokawa, Tetsuya ; Murata, Masayuki</creatorcontrib><description>In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2018.2890273</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biological evolution ; evolution ; Evolution (biology) ; Hardware ; Heuristic algorithms ; Iterative methods ; modularly varying goals ; Network function virtualization ; Network functions virtualization ; Optimization ; Performance evaluation ; Placement ; Software ; software defined networks ; Virtual networks</subject><ispartof>IEEE eTransactions on network and service management, 2019-03, Vol.16 (1), p.27-40</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</citedby><cites>FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</cites><orcidid>0000-0002-4570-2976 ; 0000-0002-3691-3675 ; 0000-0002-9254-6558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8598769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Otokura, Mari</creatorcontrib><creatorcontrib>Leibnitz, Kenji</creatorcontrib><creatorcontrib>Koizumi, Yuki</creatorcontrib><creatorcontrib>Kominami, Daichi</creatorcontrib><creatorcontrib>Shimokawa, Tetsuya</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><title>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.</description><subject>Algorithms</subject><subject>Biological evolution</subject><subject>evolution</subject><subject>Evolution (biology)</subject><subject>Hardware</subject><subject>Heuristic algorithms</subject><subject>Iterative methods</subject><subject>modularly varying goals</subject><subject>Network function virtualization</subject><subject>Network functions virtualization</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Placement</subject><subject>Software</subject><subject>software defined networks</subject><subject>Virtual networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2apB_J8U7GpsI2B07Bq5CmCetsm5m2E_-9LRvi1Xsu3uecw4PQNSUhpQTu1svXRcgIFSETQBiPTtCIQsSCOIn46b_5HF00zZaQRFBgI_Qx3btyr7LS4PfCt50q8dK0385_4llX67ZwNV6VSpvK1C1emHbj8vs-9UbVRVNhVed4Zbx1vlK1Nni6V2WnBuwSnVlVNubqmGP0NpuuJ0_B_OXxefIwDzSDqA2AJ1arjCoFicm5jjOSEqbTOLcAHDQwS0T_rqU2ixnjaaqVEFonKqc25xCN0e1h7867r840rdy6ztf9SckoUJoQHou-RQ8t7V3TeGPlzheV8j-SEjkYlINBORiUR4M9c3NgCmPMX18kIHgK0S9Fd22s</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Otokura, Mari</creator><creator>Leibnitz, Kenji</creator><creator>Koizumi, Yuki</creator><creator>Kominami, Daichi</creator><creator>Shimokawa, Tetsuya</creator><creator>Murata, Masayuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4570-2976</orcidid><orcidid>https://orcid.org/0000-0002-3691-3675</orcidid><orcidid>https://orcid.org/0000-0002-9254-6558</orcidid></search><sort><creationdate>201903</creationdate><title>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</title><author>Otokura, Mari ; Leibnitz, Kenji ; Koizumi, Yuki ; Kominami, Daichi ; Shimokawa, Tetsuya ; Murata, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biological evolution</topic><topic>evolution</topic><topic>Evolution (biology)</topic><topic>Hardware</topic><topic>Heuristic algorithms</topic><topic>Iterative methods</topic><topic>modularly varying goals</topic><topic>Network function virtualization</topic><topic>Network functions virtualization</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Placement</topic><topic>Software</topic><topic>software defined networks</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otokura, Mari</creatorcontrib><creatorcontrib>Leibnitz, Kenji</creatorcontrib><creatorcontrib>Koizumi, Yuki</creatorcontrib><creatorcontrib>Kominami, Daichi</creatorcontrib><creatorcontrib>Shimokawa, Tetsuya</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Otokura, Mari</au><au>Leibnitz, Kenji</au><au>Koizumi, Yuki</au><au>Kominami, Daichi</au><au>Shimokawa, Tetsuya</au><au>Murata, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2019-03</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>27</spage><epage>40</epage><pages>27-40</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2018.2890273</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4570-2976</orcidid><orcidid>https://orcid.org/0000-0002-3691-3675</orcidid><orcidid>https://orcid.org/0000-0002-9254-6558</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2019-03, Vol.16 (1), p.27-40 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_2191150748 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biological evolution evolution Evolution (biology) Hardware Heuristic algorithms Iterative methods modularly varying goals Network function virtualization Network functions virtualization Optimization Performance evaluation Placement Software software defined networks Virtual networks |
title | Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolvable%20Virtual%20Network%20Function%20Placement%20Method:%20Mechanism%20and%20Performance%20Evaluation&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Otokura,%20Mari&rft.date=2019-03&rft.volume=16&rft.issue=1&rft.spage=27&rft.epage=40&rft.pages=27-40&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2018.2890273&rft_dat=%3Cproquest_RIE%3E2191150748%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191150748&rft_id=info:pmid/&rft_ieee_id=8598769&rfr_iscdi=true |