Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation

In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2019-03, Vol.16 (1), p.27-40
Hauptverfasser: Otokura, Mari, Leibnitz, Kenji, Koizumi, Yuki, Kominami, Daichi, Shimokawa, Tetsuya, Murata, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 27
container_title IEEE eTransactions on network and service management
container_volume 16
creator Otokura, Mari
Leibnitz, Kenji
Koizumi, Yuki
Kominami, Daichi
Shimokawa, Tetsuya
Murata, Masayuki
description In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.
doi_str_mv 10.1109/TNSM.2018.2890273
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191150748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8598769</ieee_id><sourcerecordid>2191150748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2apB_J8U7GpsI2B07Bq5CmCetsm5m2E_-9LRvi1Xsu3uecw4PQNSUhpQTu1svXRcgIFSETQBiPTtCIQsSCOIn46b_5HF00zZaQRFBgI_Qx3btyr7LS4PfCt50q8dK0385_4llX67ZwNV6VSpvK1C1emHbj8vs-9UbVRVNhVed4Zbx1vlK1Nni6V2WnBuwSnVlVNubqmGP0NpuuJ0_B_OXxefIwDzSDqA2AJ1arjCoFicm5jjOSEqbTOLcAHDQwS0T_rqU2ixnjaaqVEFonKqc25xCN0e1h7867r840rdy6ztf9SckoUJoQHou-RQ8t7V3TeGPlzheV8j-SEjkYlINBORiUR4M9c3NgCmPMX18kIHgK0S9Fd22s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191150748</pqid></control><display><type>article</type><title>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Otokura, Mari ; Leibnitz, Kenji ; Koizumi, Yuki ; Kominami, Daichi ; Shimokawa, Tetsuya ; Murata, Masayuki</creator><creatorcontrib>Otokura, Mari ; Leibnitz, Kenji ; Koizumi, Yuki ; Kominami, Daichi ; Shimokawa, Tetsuya ; Murata, Masayuki</creatorcontrib><description>In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2018.2890273</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biological evolution ; evolution ; Evolution (biology) ; Hardware ; Heuristic algorithms ; Iterative methods ; modularly varying goals ; Network function virtualization ; Network functions virtualization ; Optimization ; Performance evaluation ; Placement ; Software ; software defined networks ; Virtual networks</subject><ispartof>IEEE eTransactions on network and service management, 2019-03, Vol.16 (1), p.27-40</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</citedby><cites>FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</cites><orcidid>0000-0002-4570-2976 ; 0000-0002-3691-3675 ; 0000-0002-9254-6558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8598769$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8598769$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Otokura, Mari</creatorcontrib><creatorcontrib>Leibnitz, Kenji</creatorcontrib><creatorcontrib>Koizumi, Yuki</creatorcontrib><creatorcontrib>Kominami, Daichi</creatorcontrib><creatorcontrib>Shimokawa, Tetsuya</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><title>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.</description><subject>Algorithms</subject><subject>Biological evolution</subject><subject>evolution</subject><subject>Evolution (biology)</subject><subject>Hardware</subject><subject>Heuristic algorithms</subject><subject>Iterative methods</subject><subject>modularly varying goals</subject><subject>Network function virtualization</subject><subject>Network functions virtualization</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>Placement</subject><subject>Software</subject><subject>software defined networks</subject><subject>Virtual networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QLwJeN2apB_J8U7GpsI2B07Bq5CmCetsm5m2E_-9LRvi1Xsu3uecw4PQNSUhpQTu1svXRcgIFSETQBiPTtCIQsSCOIn46b_5HF00zZaQRFBgI_Qx3btyr7LS4PfCt50q8dK0385_4llX67ZwNV6VSpvK1C1emHbj8vs-9UbVRVNhVed4Zbx1vlK1Nni6V2WnBuwSnVlVNubqmGP0NpuuJ0_B_OXxefIwDzSDqA2AJ1arjCoFicm5jjOSEqbTOLcAHDQwS0T_rqU2ixnjaaqVEFonKqc25xCN0e1h7867r840rdy6ztf9SckoUJoQHou-RQ8t7V3TeGPlzheV8j-SEjkYlINBORiUR4M9c3NgCmPMX18kIHgK0S9Fd22s</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Otokura, Mari</creator><creator>Leibnitz, Kenji</creator><creator>Koizumi, Yuki</creator><creator>Kominami, Daichi</creator><creator>Shimokawa, Tetsuya</creator><creator>Murata, Masayuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4570-2976</orcidid><orcidid>https://orcid.org/0000-0002-3691-3675</orcidid><orcidid>https://orcid.org/0000-0002-9254-6558</orcidid></search><sort><creationdate>201903</creationdate><title>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</title><author>Otokura, Mari ; Leibnitz, Kenji ; Koizumi, Yuki ; Kominami, Daichi ; Shimokawa, Tetsuya ; Murata, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-975fcab1aa95ed7c4b0602c64df9979c92f08005f1fb422766ca88cc5ad1fd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biological evolution</topic><topic>evolution</topic><topic>Evolution (biology)</topic><topic>Hardware</topic><topic>Heuristic algorithms</topic><topic>Iterative methods</topic><topic>modularly varying goals</topic><topic>Network function virtualization</topic><topic>Network functions virtualization</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>Placement</topic><topic>Software</topic><topic>software defined networks</topic><topic>Virtual networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otokura, Mari</creatorcontrib><creatorcontrib>Leibnitz, Kenji</creatorcontrib><creatorcontrib>Koizumi, Yuki</creatorcontrib><creatorcontrib>Kominami, Daichi</creatorcontrib><creatorcontrib>Shimokawa, Tetsuya</creatorcontrib><creatorcontrib>Murata, Masayuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Otokura, Mari</au><au>Leibnitz, Kenji</au><au>Koizumi, Yuki</au><au>Kominami, Daichi</au><au>Shimokawa, Tetsuya</au><au>Murata, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2019-03</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>27</spage><epage>40</epage><pages>27-40</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In network functions virtualization (NFV), network functions are operated in software as virtual network functions (VNFs) instead of dedicated hardware. The most important issues that need to be addressed in NFV are where the VNFs should be placed in the network, as well as what amount of resources should be assigned to each VNF. Evolvable VNF placement (EvoVNFP) is a meta-algorithm that we previously proposed for controlling an underlying iterative VNF placement method. EvoVNFP realizes better adaptability to regular demand changes by mimicking biological evolution under time-varying environments leading to faster generation of placements. We provide detailed evaluation studies about the mechanism of EvoVNFP and show that iterative placement methods combined with EvoVNFP can generate placements that adapt better to varying goals because of triggers. Numerical results verify that EvoVNFP is able to reduce the required number of calculation steps by up to 48%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2018.2890273</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4570-2976</orcidid><orcidid>https://orcid.org/0000-0002-3691-3675</orcidid><orcidid>https://orcid.org/0000-0002-9254-6558</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2019-03, Vol.16 (1), p.27-40
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_2191150748
source IEEE Electronic Library (IEL)
subjects Algorithms
Biological evolution
evolution
Evolution (biology)
Hardware
Heuristic algorithms
Iterative methods
modularly varying goals
Network function virtualization
Network functions virtualization
Optimization
Performance evaluation
Placement
Software
software defined networks
Virtual networks
title Evolvable Virtual Network Function Placement Method: Mechanism and Performance Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolvable%20Virtual%20Network%20Function%20Placement%20Method:%20Mechanism%20and%20Performance%20Evaluation&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Otokura,%20Mari&rft.date=2019-03&rft.volume=16&rft.issue=1&rft.spage=27&rft.epage=40&rft.pages=27-40&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2018.2890273&rft_dat=%3Cproquest_RIE%3E2191150748%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191150748&rft_id=info:pmid/&rft_ieee_id=8598769&rfr_iscdi=true