3D Object Retrieval Based on Multi-View Latent Variable Model
View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2019-03, Vol.29 (3), p.868-880 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 880 |
---|---|
container_issue | 3 |
container_start_page | 868 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 29 |
creator | Liu, An-An Nie, Wei-Zhi Su, Yu-Ting |
description | View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method. |
doi_str_mv | 10.1109/TCSVT.2018.2810191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191144157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8303699</ieee_id><sourcerecordid>2191144157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szyaZJDh60fkJLQWuvIdnMwpa1q0mq-O_d2uJp5vA-7zAPIefARgDMXC0mr8vFiDPQI66BgYEDMgApdcE5k4f9ziQUmoM8JicprRiDUpdqQK7FHZ37FVaZvmCODX65lt66hIF2azrbtLkplg1-06nLuM506WLjfIt01gVsT8lR7dqEZ_s5JG8P94vJUzGdPz5PbqZFxY3MhVDCuDpI6YUrlRiHEKQH8JwJAUwZr4AHAzpIhArRVyUGgEoJ4QLTNRNDcrnr_Yjd5wZTtqtuE9f9Scv7X6EsQao-xXepKnYpRaztR2zeXfyxwOxWk_3TZLea7F5TD13soAYR_wEtmBgbI34Bk5dh1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191144157</pqid></control><display><type>article</type><title>3D Object Retrieval Based on Multi-View Latent Variable Model</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, An-An ; Nie, Wei-Zhi ; Su, Yu-Ting</creator><creatorcontrib>Liu, An-An ; Nie, Wei-Zhi ; Su, Yu-Ting</creatorcontrib><description>View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2018.2810191</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D Object Retrieval ; Cameras ; Computational modeling ; Context modeling ; Datasets ; Feature extraction ; Graph-Based Model ; Latent Variable Model ; Multi-View ; Representations ; Retrieval ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Visual observation ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2019-03, Vol.29 (3), p.868-880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</citedby><cites>FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</cites><orcidid>0000-0001-5165-204X ; 0000-0002-0578-8138 ; 0000-0001-5755-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8303699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8303699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, An-An</creatorcontrib><creatorcontrib>Nie, Wei-Zhi</creatorcontrib><creatorcontrib>Su, Yu-Ting</creatorcontrib><title>3D Object Retrieval Based on Multi-View Latent Variable Model</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.</description><subject>3D Object Retrieval</subject><subject>Cameras</subject><subject>Computational modeling</subject><subject>Context modeling</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Graph-Based Model</subject><subject>Latent Variable Model</subject><subject>Multi-View</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szyaZJDh60fkJLQWuvIdnMwpa1q0mq-O_d2uJp5vA-7zAPIefARgDMXC0mr8vFiDPQI66BgYEDMgApdcE5k4f9ziQUmoM8JicprRiDUpdqQK7FHZ37FVaZvmCODX65lt66hIF2azrbtLkplg1-06nLuM506WLjfIt01gVsT8lR7dqEZ_s5JG8P94vJUzGdPz5PbqZFxY3MhVDCuDpI6YUrlRiHEKQH8JwJAUwZr4AHAzpIhArRVyUGgEoJ4QLTNRNDcrnr_Yjd5wZTtqtuE9f9Scv7X6EsQao-xXepKnYpRaztR2zeXfyxwOxWk_3TZLea7F5TD13soAYR_wEtmBgbI34Bk5dh1A</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Liu, An-An</creator><creator>Nie, Wei-Zhi</creator><creator>Su, Yu-Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5165-204X</orcidid><orcidid>https://orcid.org/0000-0002-0578-8138</orcidid><orcidid>https://orcid.org/0000-0001-5755-9145</orcidid></search><sort><creationdate>20190301</creationdate><title>3D Object Retrieval Based on Multi-View Latent Variable Model</title><author>Liu, An-An ; Nie, Wei-Zhi ; Su, Yu-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D Object Retrieval</topic><topic>Cameras</topic><topic>Computational modeling</topic><topic>Context modeling</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Graph-Based Model</topic><topic>Latent Variable Model</topic><topic>Multi-View</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, An-An</creatorcontrib><creatorcontrib>Nie, Wei-Zhi</creatorcontrib><creatorcontrib>Su, Yu-Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, An-An</au><au>Nie, Wei-Zhi</au><au>Su, Yu-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Object Retrieval Based on Multi-View Latent Variable Model</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>868</spage><epage>880</epage><pages>868-880</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2018.2810191</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5165-204X</orcidid><orcidid>https://orcid.org/0000-0002-0578-8138</orcidid><orcidid>https://orcid.org/0000-0001-5755-9145</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2019-03, Vol.29 (3), p.868-880 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2191144157 |
source | IEEE Electronic Library (IEL) |
subjects | 3D Object Retrieval Cameras Computational modeling Context modeling Datasets Feature extraction Graph-Based Model Latent Variable Model Multi-View Representations Retrieval Solid modeling Three dimensional models Three-dimensional displays Visual observation Visualization |
title | 3D Object Retrieval Based on Multi-View Latent Variable Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Object%20Retrieval%20Based%20on%20Multi-View%20Latent%20Variable%20Model&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Liu,%20An-An&rft.date=2019-03-01&rft.volume=29&rft.issue=3&rft.spage=868&rft.epage=880&rft.pages=868-880&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2018.2810191&rft_dat=%3Cproquest_RIE%3E2191144157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191144157&rft_id=info:pmid/&rft_ieee_id=8303699&rfr_iscdi=true |