3D Object Retrieval Based on Multi-View Latent Variable Model

View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2019-03, Vol.29 (3), p.868-880
Hauptverfasser: Liu, An-An, Nie, Wei-Zhi, Su, Yu-Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 880
container_issue 3
container_start_page 868
container_title IEEE transactions on circuits and systems for video technology
container_volume 29
creator Liu, An-An
Nie, Wei-Zhi
Su, Yu-Ting
description View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.
doi_str_mv 10.1109/TCSVT.2018.2810191
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2191144157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8303699</ieee_id><sourcerecordid>2191144157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szyaZJDh60fkJLQWuvIdnMwpa1q0mq-O_d2uJp5vA-7zAPIefARgDMXC0mr8vFiDPQI66BgYEDMgApdcE5k4f9ziQUmoM8JicprRiDUpdqQK7FHZ37FVaZvmCODX65lt66hIF2azrbtLkplg1-06nLuM506WLjfIt01gVsT8lR7dqEZ_s5JG8P94vJUzGdPz5PbqZFxY3MhVDCuDpI6YUrlRiHEKQH8JwJAUwZr4AHAzpIhArRVyUGgEoJ4QLTNRNDcrnr_Yjd5wZTtqtuE9f9Scv7X6EsQao-xXepKnYpRaztR2zeXfyxwOxWk_3TZLea7F5TD13soAYR_wEtmBgbI34Bk5dh1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191144157</pqid></control><display><type>article</type><title>3D Object Retrieval Based on Multi-View Latent Variable Model</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, An-An ; Nie, Wei-Zhi ; Su, Yu-Ting</creator><creatorcontrib>Liu, An-An ; Nie, Wei-Zhi ; Su, Yu-Ting</creatorcontrib><description>View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2018.2810191</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D Object Retrieval ; Cameras ; Computational modeling ; Context modeling ; Datasets ; Feature extraction ; Graph-Based Model ; Latent Variable Model ; Multi-View ; Representations ; Retrieval ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Visual observation ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2019-03, Vol.29 (3), p.868-880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</citedby><cites>FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</cites><orcidid>0000-0001-5165-204X ; 0000-0002-0578-8138 ; 0000-0001-5755-9145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8303699$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8303699$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, An-An</creatorcontrib><creatorcontrib>Nie, Wei-Zhi</creatorcontrib><creatorcontrib>Su, Yu-Ting</creatorcontrib><title>3D Object Retrieval Based on Multi-View Latent Variable Model</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.</description><subject>3D Object Retrieval</subject><subject>Cameras</subject><subject>Computational modeling</subject><subject>Context modeling</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Graph-Based Model</subject><subject>Latent Variable Model</subject><subject>Multi-View</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Visual observation</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szyaZJDh60fkJLQWuvIdnMwpa1q0mq-O_d2uJp5vA-7zAPIefARgDMXC0mr8vFiDPQI66BgYEDMgApdcE5k4f9ziQUmoM8JicprRiDUpdqQK7FHZ37FVaZvmCODX65lt66hIF2azrbtLkplg1-06nLuM506WLjfIt01gVsT8lR7dqEZ_s5JG8P94vJUzGdPz5PbqZFxY3MhVDCuDpI6YUrlRiHEKQH8JwJAUwZr4AHAzpIhArRVyUGgEoJ4QLTNRNDcrnr_Yjd5wZTtqtuE9f9Scv7X6EsQao-xXepKnYpRaztR2zeXfyxwOxWk_3TZLea7F5TD13soAYR_wEtmBgbI34Bk5dh1A</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Liu, An-An</creator><creator>Nie, Wei-Zhi</creator><creator>Su, Yu-Ting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5165-204X</orcidid><orcidid>https://orcid.org/0000-0002-0578-8138</orcidid><orcidid>https://orcid.org/0000-0001-5755-9145</orcidid></search><sort><creationdate>20190301</creationdate><title>3D Object Retrieval Based on Multi-View Latent Variable Model</title><author>Liu, An-An ; Nie, Wei-Zhi ; Su, Yu-Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3739afd55b3a4736ddd5b11b20331079b712d918d5e1ceebc4ed11c733ad08f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D Object Retrieval</topic><topic>Cameras</topic><topic>Computational modeling</topic><topic>Context modeling</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Graph-Based Model</topic><topic>Latent Variable Model</topic><topic>Multi-View</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Visual observation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, An-An</creatorcontrib><creatorcontrib>Nie, Wei-Zhi</creatorcontrib><creatorcontrib>Su, Yu-Ting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, An-An</au><au>Nie, Wei-Zhi</au><au>Su, Yu-Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Object Retrieval Based on Multi-View Latent Variable Model</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>868</spage><epage>880</epage><pages>868-880</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>View-based 3D object retrieval, in which multiple views are used for representation and retrieval, has attracted increasing attention due to its great flexibility. In this paper, we propose a discriminative multi-view latent variable model (MVLVM) for this task. Specifically, we design MVLVM to have an undirected graph structure in which the view set of a given 3D object is treated as the observations from which to discover the latent visual and spatial contexts. Then, we detail the learning and inference process of MVLVM for view-based 3D object retrieval. The proposed MVLVM has the following beneficial features: 1) it jointly learns visual and spatial contexts for 3D object modelling and 2) it avoids the difficulty of representative view extraction for model representation. Consequently, it can support flexible 3D model retrieval for real applications by avoiding camera array constraints, which severely constrain traditional methods. We report extensive experiments conducted on single-modal datasets (the NTU and ITI datasets) and a multi-modal dataset (MVRED-RGB and MVRED-Depth). These comparative experiments demonstrate the superiority of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2018.2810191</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5165-204X</orcidid><orcidid>https://orcid.org/0000-0002-0578-8138</orcidid><orcidid>https://orcid.org/0000-0001-5755-9145</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2019-03, Vol.29 (3), p.868-880
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2191144157
source IEEE Electronic Library (IEL)
subjects 3D Object Retrieval
Cameras
Computational modeling
Context modeling
Datasets
Feature extraction
Graph-Based Model
Latent Variable Model
Multi-View
Representations
Retrieval
Solid modeling
Three dimensional models
Three-dimensional displays
Visual observation
Visualization
title 3D Object Retrieval Based on Multi-View Latent Variable Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Object%20Retrieval%20Based%20on%20Multi-View%20Latent%20Variable%20Model&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Liu,%20An-An&rft.date=2019-03-01&rft.volume=29&rft.issue=3&rft.spage=868&rft.epage=880&rft.pages=868-880&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2018.2810191&rft_dat=%3Cproquest_RIE%3E2191144157%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191144157&rft_id=info:pmid/&rft_ieee_id=8303699&rfr_iscdi=true