On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2)-expansion method and the modified Kudryashov method

The aim of this article is to obtain and study the solutions of conformable time fractional (1+2)-dimensional extended Zakharov–Kuznetsov equation (2D-FZKE) which is modeled to investigate the waves in magnetized plasma. Wave transformation in fractional form is applied to convert the original fract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SeMA journal 2019-03, Vol.76 (1), p.15-25
Hauptverfasser: Ali, Muhammad Nasir, Osman, M. S., Husnine, Syed Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 15
container_title SeMA journal
container_volume 76
creator Ali, Muhammad Nasir
Osman, M. S.
Husnine, Syed Muhammad
description The aim of this article is to obtain and study the solutions of conformable time fractional (1+2)-dimensional extended Zakharov–Kuznetsov equation (2D-FZKE) which is modeled to investigate the waves in magnetized plasma. Wave transformation in fractional form is applied to convert the original fractional order nonlinear partial differential equation into another nonlinear ordinary differential equation. The strategy here consists of using ( G ′ / G 2 )-expansion method and the modified Kudryashov method to obtain a variety of exact solutions. Both schemes work well and reveal distinct exact solutions. These solutions are of significant importance in plasma physics where the 2D-FZKE is modeled for some special physical phenomenon.
doi_str_mv 10.1007/s40324-018-0152-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191090445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191090445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-b0ccb819269de654204cfddef382f76f21f648ad2054b46f8ed14d51dfceadc33</originalsourceid><addsrcrecordid>eNp1kUFO3DAUhiNUJNCUA7Cz1E27MNgvTiZZolE7IJDYwIaN5djPJG0Sz9jJiGHFHXqI7jkSJ6lDkLrqwrKl9_2fbf1JcsrZGWdseR4ES0FQxou4MqD5QXIMUHC6LJbZp-mcCZqWDI6SkxCaikFZZMCAHyd_bnsy1EhUr9r90GjVkuDacWhcH4izRLveOt-pqkUyNB1S65WephHEpwF7g4Y8qF-18m739vL7enzucQhuR3A7qgmMeu_Gx5p8Xb-9vJ6v4RvFp43qwzTrcKidibeb91d0zjS2icbr0fi9CnX0zMjn5NCqNuDJx75I7n98v1td0pvb9dXq4oZqSHlOK6Z1VfAS8tJgnglgQltj0KYF2GVugdtcFMoAy0Qlclug4cJk3FiNyug0XSRfZu_Gu-2IYZA_3ejjb4MEXnJWMiGySPGZ0t6F4NHKjW865feSMzlVIudKZKxETpXIPGZgzoTI9o_o_5n_H_oLMKqUpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191090445</pqid></control><display><type>article</type><title>On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2)-expansion method and the modified Kudryashov method</title><source>SpringerNature Journals</source><creator>Ali, Muhammad Nasir ; Osman, M. S. ; Husnine, Syed Muhammad</creator><creatorcontrib>Ali, Muhammad Nasir ; Osman, M. S. ; Husnine, Syed Muhammad</creatorcontrib><description>The aim of this article is to obtain and study the solutions of conformable time fractional (1+2)-dimensional extended Zakharov–Kuznetsov equation (2D-FZKE) which is modeled to investigate the waves in magnetized plasma. Wave transformation in fractional form is applied to convert the original fractional order nonlinear partial differential equation into another nonlinear ordinary differential equation. The strategy here consists of using ( G ′ / G 2 )-expansion method and the modified Kudryashov method to obtain a variety of exact solutions. Both schemes work well and reveal distinct exact solutions. These solutions are of significant importance in plasma physics where the 2D-FZKE is modeled for some special physical phenomenon.</description><identifier>ISSN: 2254-3902</identifier><identifier>EISSN: 2281-7875</identifier><identifier>DOI: 10.1007/s40324-018-0152-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Exact solutions ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Ordinary differential equations ; Partial differential equations ; Plasma physics ; Two dimensional models</subject><ispartof>SeMA journal, 2019-03, Vol.76 (1), p.15-25</ispartof><rights>Sociedad Española de Matemática Aplicada 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-b0ccb819269de654204cfddef382f76f21f648ad2054b46f8ed14d51dfceadc33</citedby><cites>FETCH-LOGICAL-c2316-b0ccb819269de654204cfddef382f76f21f648ad2054b46f8ed14d51dfceadc33</cites><orcidid>0000-0002-5783-0940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40324-018-0152-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40324-018-0152-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ali, Muhammad Nasir</creatorcontrib><creatorcontrib>Osman, M. S.</creatorcontrib><creatorcontrib>Husnine, Syed Muhammad</creatorcontrib><title>On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2)-expansion method and the modified Kudryashov method</title><title>SeMA journal</title><addtitle>SeMA</addtitle><description>The aim of this article is to obtain and study the solutions of conformable time fractional (1+2)-dimensional extended Zakharov–Kuznetsov equation (2D-FZKE) which is modeled to investigate the waves in magnetized plasma. Wave transformation in fractional form is applied to convert the original fractional order nonlinear partial differential equation into another nonlinear ordinary differential equation. The strategy here consists of using ( G ′ / G 2 )-expansion method and the modified Kudryashov method to obtain a variety of exact solutions. Both schemes work well and reveal distinct exact solutions. These solutions are of significant importance in plasma physics where the 2D-FZKE is modeled for some special physical phenomenon.</description><subject>Applications of Mathematics</subject><subject>Exact solutions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Plasma physics</subject><subject>Two dimensional models</subject><issn>2254-3902</issn><issn>2281-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kUFO3DAUhiNUJNCUA7Cz1E27MNgvTiZZolE7IJDYwIaN5djPJG0Sz9jJiGHFHXqI7jkSJ6lDkLrqwrKl9_2fbf1JcsrZGWdseR4ES0FQxou4MqD5QXIMUHC6LJbZp-mcCZqWDI6SkxCaikFZZMCAHyd_bnsy1EhUr9r90GjVkuDacWhcH4izRLveOt-pqkUyNB1S65WephHEpwF7g4Y8qF-18m739vL7enzucQhuR3A7qgmMeu_Gx5p8Xb-9vJ6v4RvFp43qwzTrcKidibeb91d0zjS2icbr0fi9CnX0zMjn5NCqNuDJx75I7n98v1td0pvb9dXq4oZqSHlOK6Z1VfAS8tJgnglgQltj0KYF2GVugdtcFMoAy0Qlclug4cJk3FiNyug0XSRfZu_Gu-2IYZA_3ejjb4MEXnJWMiGySPGZ0t6F4NHKjW865feSMzlVIudKZKxETpXIPGZgzoTI9o_o_5n_H_oLMKqUpQ</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Ali, Muhammad Nasir</creator><creator>Osman, M. S.</creator><creator>Husnine, Syed Muhammad</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5783-0940</orcidid></search><sort><creationdate>20190312</creationdate><title>On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2)-expansion method and the modified Kudryashov method</title><author>Ali, Muhammad Nasir ; Osman, M. S. ; Husnine, Syed Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-b0ccb819269de654204cfddef382f76f21f648ad2054b46f8ed14d51dfceadc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Exact solutions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Plasma physics</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Muhammad Nasir</creatorcontrib><creatorcontrib>Osman, M. S.</creatorcontrib><creatorcontrib>Husnine, Syed Muhammad</creatorcontrib><collection>CrossRef</collection><jtitle>SeMA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Muhammad Nasir</au><au>Osman, M. S.</au><au>Husnine, Syed Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2)-expansion method and the modified Kudryashov method</atitle><jtitle>SeMA journal</jtitle><stitle>SeMA</stitle><date>2019-03-12</date><risdate>2019</risdate><volume>76</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>2254-3902</issn><eissn>2281-7875</eissn><abstract>The aim of this article is to obtain and study the solutions of conformable time fractional (1+2)-dimensional extended Zakharov–Kuznetsov equation (2D-FZKE) which is modeled to investigate the waves in magnetized plasma. Wave transformation in fractional form is applied to convert the original fractional order nonlinear partial differential equation into another nonlinear ordinary differential equation. The strategy here consists of using ( G ′ / G 2 )-expansion method and the modified Kudryashov method to obtain a variety of exact solutions. Both schemes work well and reveal distinct exact solutions. These solutions are of significant importance in plasma physics where the 2D-FZKE is modeled for some special physical phenomenon.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40324-018-0152-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5783-0940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2254-3902
ispartof SeMA journal, 2019-03, Vol.76 (1), p.15-25
issn 2254-3902
2281-7875
language eng
recordid cdi_proquest_journals_2191090445
source SpringerNature Journals
subjects Applications of Mathematics
Exact solutions
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Ordinary differential equations
Partial differential equations
Plasma physics
Two dimensional models
title On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through (G′/G2)-expansion method and the modified Kudryashov method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20analytical%20solutions%20of%20conformable%20time-fractional%20extended%20Zakharov%E2%80%93Kuznetsov%20equation%20through%20(G%E2%80%B2/G2)-expansion%20method%20and%20the%20modified%20Kudryashov%20method&rft.jtitle=SeMA%20journal&rft.au=Ali,%20Muhammad%20Nasir&rft.date=2019-03-12&rft.volume=76&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=2254-3902&rft.eissn=2281-7875&rft_id=info:doi/10.1007/s40324-018-0152-6&rft_dat=%3Cproquest_cross%3E2191090445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191090445&rft_id=info:pmid/&rfr_iscdi=true