Functional Quantization-Based Data Compression in Seismic Acquisition

The trend in seismic acquisition is geared toward high geophone densities. Future node densities are expected to be on the order of 1M nodes, leading to a huge aggregate data rate in the geophone array and requiring the use of some form of signal compression. This work presents a family of signal co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2019-03, Vol.44 (3), p.2151-2163
Hauptverfasser: Khan, Hamood ur Rehman, Zummo, Salam A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2163
container_issue 3
container_start_page 2151
container_title Arabian journal for science and engineering (2011)
container_volume 44
creator Khan, Hamood ur Rehman
Zummo, Salam A.
description The trend in seismic acquisition is geared toward high geophone densities. Future node densities are expected to be on the order of 1M nodes, leading to a huge aggregate data rate in the geophone array and requiring the use of some form of signal compression. This work presents a family of signal compression algorithms based on vector quantization and its transposition to the infinite-dimensional case—functional quantization (FQ). Using FQ, we quantize the entire sample path of the seismic waveform in a target function space, instead of quantizing individual samples. The polynomial design and computational complexity afforded by FQ allow for online training of codebooks where the statistics of the seismic wavefield may be changing. An efficient algorithm for the construction of a functional quantizer is given. It is based on Monte Carlo simulation to circumvent the curse of high dimensionality and avoids explicit construction of Voronoi regions to tessellate the function space of interest. In the sequel, we augment our basic FQ architecture with three different VQ techniques in the literature. The augmentation yields hybridized FQ strategies. These hybrid quantization algorithms are: (1) FQ-classified VQ, (2) FQ-residual/multistage VQ and (3) FQ-recursive VQ. The joint quantizers are obtained by replacing regular VQ codebooks in these hybrid quantizers by their FQ equivalents. Simulation results show that the FQ combined with these different VQ techniques performs better in the rate–distortion sense than either FQ alone or the aforementioned VQ techniques in isolation.
doi_str_mv 10.1007/s13369-018-3367-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191090423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191090423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9ec3f8126fbf89a287cdf8232b1e9c2f869ee31fc3d58bbcb9ce9f98cda19a5a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwVPEczSf8kx7XuqrAgooK3kKaJRLbtbtIe7Kc3tYInT_MGfu8x8xC6BHINhBQ3ARjLBSbAcRQFHk_QgoIAnFIOpz-a4Swv3s_RKgRXkZQzkQGwBdpsh1b3rmvVPnkeVNu7UU0rvlXB1Mmd6lVSds3Bm2js2sS1yYtxoXE6Wevj4IKb6At0ZtU-mNXvXKK37ea1fMC7p_vHcr3DmkHeY2E0sxxobivLhaK80LXllNEKjNDU8lwYw8BqVme8qnQltBFWcF0rECpTbImu5tyD746DCb387AYfbw9y-pcIklIWKZgp7bsQvLHy4F2j_JcEIqfC5FyYjIXJqTA5Rg-dPSGy7Yfxf8n_m74BPXlvvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191090423</pqid></control><display><type>article</type><title>Functional Quantization-Based Data Compression in Seismic Acquisition</title><source>Springer Nature - Complete Springer Journals</source><creator>Khan, Hamood ur Rehman ; Zummo, Salam A.</creator><creatorcontrib>Khan, Hamood ur Rehman ; Zummo, Salam A.</creatorcontrib><description>The trend in seismic acquisition is geared toward high geophone densities. Future node densities are expected to be on the order of 1M nodes, leading to a huge aggregate data rate in the geophone array and requiring the use of some form of signal compression. This work presents a family of signal compression algorithms based on vector quantization and its transposition to the infinite-dimensional case—functional quantization (FQ). Using FQ, we quantize the entire sample path of the seismic waveform in a target function space, instead of quantizing individual samples. The polynomial design and computational complexity afforded by FQ allow for online training of codebooks where the statistics of the seismic wavefield may be changing. An efficient algorithm for the construction of a functional quantizer is given. It is based on Monte Carlo simulation to circumvent the curse of high dimensionality and avoids explicit construction of Voronoi regions to tessellate the function space of interest. In the sequel, we augment our basic FQ architecture with three different VQ techniques in the literature. The augmentation yields hybridized FQ strategies. These hybrid quantization algorithms are: (1) FQ-classified VQ, (2) FQ-residual/multistage VQ and (3) FQ-recursive VQ. The joint quantizers are obtained by replacing regular VQ codebooks in these hybrid quantizers by their FQ equivalents. Simulation results show that the FQ combined with these different VQ techniques performs better in the rate–distortion sense than either FQ alone or the aforementioned VQ techniques in isolation.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-018-3367-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Computer simulation ; Counters ; Counting ; Data compression ; Engineering ; Function space ; Humanities and Social Sciences ; Monte Carlo simulation ; multidisciplinary ; Polynomials ; Research Article - Electrical Engineering ; Science ; Statistical methods ; Vector quantization</subject><ispartof>Arabian journal for science and engineering (2011), 2019-03, Vol.44 (3), p.2151-2163</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9ec3f8126fbf89a287cdf8232b1e9c2f869ee31fc3d58bbcb9ce9f98cda19a5a3</citedby><cites>FETCH-LOGICAL-c316t-9ec3f8126fbf89a287cdf8232b1e9c2f869ee31fc3d58bbcb9ce9f98cda19a5a3</cites><orcidid>0000-0002-0343-6446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-018-3367-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-018-3367-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Khan, Hamood ur Rehman</creatorcontrib><creatorcontrib>Zummo, Salam A.</creatorcontrib><title>Functional Quantization-Based Data Compression in Seismic Acquisition</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>The trend in seismic acquisition is geared toward high geophone densities. Future node densities are expected to be on the order of 1M nodes, leading to a huge aggregate data rate in the geophone array and requiring the use of some form of signal compression. This work presents a family of signal compression algorithms based on vector quantization and its transposition to the infinite-dimensional case—functional quantization (FQ). Using FQ, we quantize the entire sample path of the seismic waveform in a target function space, instead of quantizing individual samples. The polynomial design and computational complexity afforded by FQ allow for online training of codebooks where the statistics of the seismic wavefield may be changing. An efficient algorithm for the construction of a functional quantizer is given. It is based on Monte Carlo simulation to circumvent the curse of high dimensionality and avoids explicit construction of Voronoi regions to tessellate the function space of interest. In the sequel, we augment our basic FQ architecture with three different VQ techniques in the literature. The augmentation yields hybridized FQ strategies. These hybrid quantization algorithms are: (1) FQ-classified VQ, (2) FQ-residual/multistage VQ and (3) FQ-recursive VQ. The joint quantizers are obtained by replacing regular VQ codebooks in these hybrid quantizers by their FQ equivalents. Simulation results show that the FQ combined with these different VQ techniques performs better in the rate–distortion sense than either FQ alone or the aforementioned VQ techniques in isolation.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Counters</subject><subject>Counting</subject><subject>Data compression</subject><subject>Engineering</subject><subject>Function space</subject><subject>Humanities and Social Sciences</subject><subject>Monte Carlo simulation</subject><subject>multidisciplinary</subject><subject>Polynomials</subject><subject>Research Article - Electrical Engineering</subject><subject>Science</subject><subject>Statistical methods</subject><subject>Vector quantization</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwVPEczSf8kx7XuqrAgooK3kKaJRLbtbtIe7Kc3tYInT_MGfu8x8xC6BHINhBQ3ARjLBSbAcRQFHk_QgoIAnFIOpz-a4Swv3s_RKgRXkZQzkQGwBdpsh1b3rmvVPnkeVNu7UU0rvlXB1Mmd6lVSds3Bm2js2sS1yYtxoXE6Wevj4IKb6At0ZtU-mNXvXKK37ea1fMC7p_vHcr3DmkHeY2E0sxxobivLhaK80LXllNEKjNDU8lwYw8BqVme8qnQltBFWcF0rECpTbImu5tyD746DCb387AYfbw9y-pcIklIWKZgp7bsQvLHy4F2j_JcEIqfC5FyYjIXJqTA5Rg-dPSGy7Yfxf8n_m74BPXlvvA</recordid><startdate>20190311</startdate><enddate>20190311</enddate><creator>Khan, Hamood ur Rehman</creator><creator>Zummo, Salam A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0343-6446</orcidid></search><sort><creationdate>20190311</creationdate><title>Functional Quantization-Based Data Compression in Seismic Acquisition</title><author>Khan, Hamood ur Rehman ; Zummo, Salam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9ec3f8126fbf89a287cdf8232b1e9c2f869ee31fc3d58bbcb9ce9f98cda19a5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Counters</topic><topic>Counting</topic><topic>Data compression</topic><topic>Engineering</topic><topic>Function space</topic><topic>Humanities and Social Sciences</topic><topic>Monte Carlo simulation</topic><topic>multidisciplinary</topic><topic>Polynomials</topic><topic>Research Article - Electrical Engineering</topic><topic>Science</topic><topic>Statistical methods</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Hamood ur Rehman</creatorcontrib><creatorcontrib>Zummo, Salam A.</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Hamood ur Rehman</au><au>Zummo, Salam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Quantization-Based Data Compression in Seismic Acquisition</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2019-03-11</date><risdate>2019</risdate><volume>44</volume><issue>3</issue><spage>2151</spage><epage>2163</epage><pages>2151-2163</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>The trend in seismic acquisition is geared toward high geophone densities. Future node densities are expected to be on the order of 1M nodes, leading to a huge aggregate data rate in the geophone array and requiring the use of some form of signal compression. This work presents a family of signal compression algorithms based on vector quantization and its transposition to the infinite-dimensional case—functional quantization (FQ). Using FQ, we quantize the entire sample path of the seismic waveform in a target function space, instead of quantizing individual samples. The polynomial design and computational complexity afforded by FQ allow for online training of codebooks where the statistics of the seismic wavefield may be changing. An efficient algorithm for the construction of a functional quantizer is given. It is based on Monte Carlo simulation to circumvent the curse of high dimensionality and avoids explicit construction of Voronoi regions to tessellate the function space of interest. In the sequel, we augment our basic FQ architecture with three different VQ techniques in the literature. The augmentation yields hybridized FQ strategies. These hybrid quantization algorithms are: (1) FQ-classified VQ, (2) FQ-residual/multistage VQ and (3) FQ-recursive VQ. The joint quantizers are obtained by replacing regular VQ codebooks in these hybrid quantizers by their FQ equivalents. Simulation results show that the FQ combined with these different VQ techniques performs better in the rate–distortion sense than either FQ alone or the aforementioned VQ techniques in isolation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-018-3367-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0343-6446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2019-03, Vol.44 (3), p.2151-2163
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_2191090423
source Springer Nature - Complete Springer Journals
subjects Algorithms
Computer simulation
Counters
Counting
Data compression
Engineering
Function space
Humanities and Social Sciences
Monte Carlo simulation
multidisciplinary
Polynomials
Research Article - Electrical Engineering
Science
Statistical methods
Vector quantization
title Functional Quantization-Based Data Compression in Seismic Acquisition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Quantization-Based%20Data%20Compression%20in%20Seismic%20Acquisition&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Khan,%20Hamood%20ur%20Rehman&rft.date=2019-03-11&rft.volume=44&rft.issue=3&rft.spage=2151&rft.epage=2163&rft.pages=2151-2163&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-018-3367-z&rft_dat=%3Cproquest_cross%3E2191090423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191090423&rft_id=info:pmid/&rfr_iscdi=true