Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude

The aim of this paper is to provide, in a β -plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2019-06, Vol.21 (2), p.1-16, Article 19
Hauptverfasser: Chu, Jifeng, Ionescu-Kruse, Delia, Yang, Yanjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 2
container_start_page 1
container_title Journal of mathematical fluid mechanics
container_volume 21
creator Chu, Jifeng
Ionescu-Kruse, Delia
Yang, Yanjuan
description The aim of this paper is to provide, in a β -plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.
doi_str_mv 10.1007/s00021-019-0423-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2191090346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191090346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e6cd164385fa69d78571ec08c66de46d97c96f768350bdd0861e7d4d4f2b998b3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-oku5tNjqW0tVDwoOIxZJOsTVl3a5JV--9NWdGTpxke73szPISuCdwSgOouAAAlGRCRQUHzjJ-gCSkozZgo6envTvk5ughhB0CqUtAJahZfSkf82LdDdH2HVWfwugtR1a518YCb3uOV7ffbQ3BatfhFfdiAP13c4rntond7G5O87L1O-pFWEc987aJX_oA3Kro4GHuJzhrVBnv1M6foebl4mt9nm4fVej7bZDov85hZpg1hRc7LRjFhKl5WxGrgmjFjC2ZEpQVrKsbzEmpjgDNiK1OYoqG1ELzOp-hmzN37_n2wIcpdP_gunZSUCAIC8oIlFxld2vcheNvIvXdv6V9JQB7rlGOdMtUpj3VKnhg6MiF5u1fr_5L_h74Bntd4Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191090346</pqid></control><display><type>article</type><title>Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude</title><source>SpringerLink Journals</source><creator>Chu, Jifeng ; Ionescu-Kruse, Delia ; Yang, Yanjuan</creator><creatorcontrib>Chu, Jifeng ; Ionescu-Kruse, Delia ; Yang, Yanjuan</creatorcontrib><description>The aim of this paper is to provide, in a β -plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-019-0423-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Centripetal force ; Classical and Continuum Physics ; Fluid mechanics ; Fluid- and Aerodynamics ; Geophysics ; Latitude ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Slopes ; Stability ; Theoretical mathematics ; Wave propagation</subject><ispartof>Journal of mathematical fluid mechanics, 2019-06, Vol.21 (2), p.1-16, Article 19</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e6cd164385fa69d78571ec08c66de46d97c96f768350bdd0861e7d4d4f2b998b3</citedby><cites>FETCH-LOGICAL-c353t-e6cd164385fa69d78571ec08c66de46d97c96f768350bdd0861e7d4d4f2b998b3</cites><orcidid>0000-0002-0393-420X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-019-0423-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-019-0423-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chu, Jifeng</creatorcontrib><creatorcontrib>Ionescu-Kruse, Delia</creatorcontrib><creatorcontrib>Yang, Yanjuan</creatorcontrib><title>Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>The aim of this paper is to provide, in a β -plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.</description><subject>Centripetal force</subject><subject>Classical and Continuum Physics</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Geophysics</subject><subject>Latitude</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Slopes</subject><subject>Stability</subject><subject>Theoretical mathematics</subject><subject>Wave propagation</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-oku5tNjqW0tVDwoOIxZJOsTVl3a5JV--9NWdGTpxke73szPISuCdwSgOouAAAlGRCRQUHzjJ-gCSkozZgo6envTvk5ughhB0CqUtAJahZfSkf82LdDdH2HVWfwugtR1a518YCb3uOV7ffbQ3BatfhFfdiAP13c4rntond7G5O87L1O-pFWEc987aJX_oA3Kro4GHuJzhrVBnv1M6foebl4mt9nm4fVej7bZDov85hZpg1hRc7LRjFhKl5WxGrgmjFjC2ZEpQVrKsbzEmpjgDNiK1OYoqG1ELzOp-hmzN37_n2wIcpdP_gunZSUCAIC8oIlFxld2vcheNvIvXdv6V9JQB7rlGOdMtUpj3VKnhg6MiF5u1fr_5L_h74Bntd4Sg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Chu, Jifeng</creator><creator>Ionescu-Kruse, Delia</creator><creator>Yang, Yanjuan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0393-420X</orcidid></search><sort><creationdate>20190601</creationdate><title>Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude</title><author>Chu, Jifeng ; Ionescu-Kruse, Delia ; Yang, Yanjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e6cd164385fa69d78571ec08c66de46d97c96f768350bdd0861e7d4d4f2b998b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Centripetal force</topic><topic>Classical and Continuum Physics</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Geophysics</topic><topic>Latitude</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Slopes</topic><topic>Stability</topic><topic>Theoretical mathematics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Jifeng</creatorcontrib><creatorcontrib>Ionescu-Kruse, Delia</creatorcontrib><creatorcontrib>Yang, Yanjuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Jifeng</au><au>Ionescu-Kruse, Delia</au><au>Yang, Yanjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>21</volume><issue>2</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>19</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>The aim of this paper is to provide, in a β -plane approximation with centripetal forces, an explicit three-dimensional nonlinear solution for geophysical waves propagating at an arbitrary latitude, in the presence of a constant underlying background current. This solution is linearly unstable when the steepness of the wave exceeds a specific threshold.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-019-0423-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0393-420X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2019-06, Vol.21 (2), p.1-16, Article 19
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2191090346
source SpringerLink Journals
subjects Centripetal force
Classical and Continuum Physics
Fluid mechanics
Fluid- and Aerodynamics
Geophysics
Latitude
Mathematical Methods in Physics
Physics
Physics and Astronomy
Slopes
Stability
Theoretical mathematics
Wave propagation
title Exact Solution and Instability for Geophysical Waves with Centripetal Forces and at Arbitrary Latitude
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solution%20and%20Instability%20for%20Geophysical%20Waves%20with%20Centripetal%20Forces%20and%20at%20Arbitrary%20Latitude&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Chu,%20Jifeng&rft.date=2019-06-01&rft.volume=21&rft.issue=2&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=19&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-019-0423-8&rft_dat=%3Cproquest_cross%3E2191090346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191090346&rft_id=info:pmid/&rfr_iscdi=true