Routing entanglement in the quantum internet
Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rat...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2019-03, Vol.5 (1), Article 25 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj quantum information |
container_volume | 5 |
creator | Pant, Mihir Krovi, Hari Towsley, Don Tassiulas, Leandros Jiang, Liang Basu, Prithwish Englund, Dirk Guha, Saikat |
description | Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory.
Quantum internet: all roads lead to entanglement distribution
The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication. |
doi_str_mv | 10.1038/s41534-019-0139-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190996123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190996123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOOY-gG8FX63eJW2aPMpQJwwE0eeQtmntWNMtSWF-e1Mq6Itwx93B73_H_Qm5RrhDYOLeZ5izLAWUMZlMT2dkQSHnKWeiOP_TX5KV9zuASFJBM1yQ27dhDJ1tE2ODtu3e9LFJOpuET5McR23D2McxGGdNuCIXjd57s_qpS_Lx9Pi-3qTb1-eX9cM2rVguQ6q1LjXWEsspoNKacypigqwqIyRgJAQFVogCm4ZJnjc5r6EqmczrrGZLcjPvPbjhOBof1G4YnY0nFUUJUnKkLFI4U5UbvHemUQfX9dp9KQQ1-aJmX1T8Vk2-qFPU0FnjI2tb4343_y_6BtitZPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190996123</pqid></control><display><type>article</type><title>Routing entanglement in the quantum internet</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Pant, Mihir ; Krovi, Hari ; Towsley, Don ; Tassiulas, Leandros ; Jiang, Liang ; Basu, Prithwish ; Englund, Dirk ; Guha, Saikat</creator><creatorcontrib>Pant, Mihir ; Krovi, Hari ; Towsley, Don ; Tassiulas, Leandros ; Jiang, Liang ; Basu, Prithwish ; Englund, Dirk ; Guha, Saikat</creatorcontrib><description>Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory.
Quantum internet: all roads lead to entanglement distribution
The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-019-0139-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Developmental stages ; Information theory ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Quantum theory ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2019-03, Vol.5 (1), Article 25</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</citedby><cites>FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</cites><orcidid>0000-0002-0000-9342 ; 0000-0002-1043-3489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-019-0139-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-019-0139-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Pant, Mihir</creatorcontrib><creatorcontrib>Krovi, Hari</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Basu, Prithwish</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Guha, Saikat</creatorcontrib><title>Routing entanglement in the quantum internet</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory.
Quantum internet: all roads lead to entanglement distribution
The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.</description><subject>639/624/1075/187</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Developmental stages</subject><subject>Information theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAQx4MoOOY-gG8FX63eJW2aPMpQJwwE0eeQtmntWNMtSWF-e1Mq6Itwx93B73_H_Qm5RrhDYOLeZ5izLAWUMZlMT2dkQSHnKWeiOP_TX5KV9zuASFJBM1yQ27dhDJ1tE2ODtu3e9LFJOpuET5McR23D2McxGGdNuCIXjd57s_qpS_Lx9Pi-3qTb1-eX9cM2rVguQ6q1LjXWEsspoNKacypigqwqIyRgJAQFVogCm4ZJnjc5r6EqmczrrGZLcjPvPbjhOBof1G4YnY0nFUUJUnKkLFI4U5UbvHemUQfX9dp9KQQ1-aJmX1T8Vk2-qFPU0FnjI2tb4343_y_6BtitZPQ</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Pant, Mihir</creator><creator>Krovi, Hari</creator><creator>Towsley, Don</creator><creator>Tassiulas, Leandros</creator><creator>Jiang, Liang</creator><creator>Basu, Prithwish</creator><creator>Englund, Dirk</creator><creator>Guha, Saikat</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0000-9342</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid></search><sort><creationdate>20190313</creationdate><title>Routing entanglement in the quantum internet</title><author>Pant, Mihir ; Krovi, Hari ; Towsley, Don ; Tassiulas, Leandros ; Jiang, Liang ; Basu, Prithwish ; Englund, Dirk ; Guha, Saikat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/187</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Developmental stages</topic><topic>Information theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pant, Mihir</creatorcontrib><creatorcontrib>Krovi, Hari</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Basu, Prithwish</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Guha, Saikat</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pant, Mihir</au><au>Krovi, Hari</au><au>Towsley, Don</au><au>Tassiulas, Leandros</au><au>Jiang, Liang</au><au>Basu, Prithwish</au><au>Englund, Dirk</au><au>Guha, Saikat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Routing entanglement in the quantum internet</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2019-03-13</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>25</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory.
Quantum internet: all roads lead to entanglement distribution
The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-019-0139-x</doi><orcidid>https://orcid.org/0000-0002-0000-9342</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2019-03, Vol.5 (1), Article 25 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_proquest_journals_2190996123 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free |
subjects | 639/624/1075/187 639/766/483/481 Classical and Quantum Gravitation Developmental stages Information theory Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Quantum theory Relativity Theory Spintronics String Theory |
title | Routing entanglement in the quantum internet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Routing%20entanglement%20in%20the%20quantum%20internet&rft.jtitle=npj%20quantum%20information&rft.au=Pant,%20Mihir&rft.date=2019-03-13&rft.volume=5&rft.issue=1&rft.artnum=25&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-019-0139-x&rft_dat=%3Cproquest_cross%3E2190996123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190996123&rft_id=info:pmid/&rfr_iscdi=true |