Routing entanglement in the quantum internet

Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2019-03, Vol.5 (1), Article 25
Hauptverfasser: Pant, Mihir, Krovi, Hari, Towsley, Don, Tassiulas, Leandros, Jiang, Liang, Basu, Prithwish, Englund, Dirk, Guha, Saikat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj quantum information
container_volume 5
creator Pant, Mihir
Krovi, Hari
Towsley, Don
Tassiulas, Leandros
Jiang, Liang
Basu, Prithwish
Englund, Dirk
Guha, Saikat
description Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory. Quantum internet: all roads lead to entanglement distribution The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.
doi_str_mv 10.1038/s41534-019-0139-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190996123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190996123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOOY-gG8FX63eJW2aPMpQJwwE0eeQtmntWNMtSWF-e1Mq6Itwx93B73_H_Qm5RrhDYOLeZ5izLAWUMZlMT2dkQSHnKWeiOP_TX5KV9zuASFJBM1yQ27dhDJ1tE2ODtu3e9LFJOpuET5McR23D2McxGGdNuCIXjd57s_qpS_Lx9Pi-3qTb1-eX9cM2rVguQ6q1LjXWEsspoNKacypigqwqIyRgJAQFVogCm4ZJnjc5r6EqmczrrGZLcjPvPbjhOBof1G4YnY0nFUUJUnKkLFI4U5UbvHemUQfX9dp9KQQ1-aJmX1T8Vk2-qFPU0FnjI2tb4343_y_6BtitZPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190996123</pqid></control><display><type>article</type><title>Routing entanglement in the quantum internet</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Pant, Mihir ; Krovi, Hari ; Towsley, Don ; Tassiulas, Leandros ; Jiang, Liang ; Basu, Prithwish ; Englund, Dirk ; Guha, Saikat</creator><creatorcontrib>Pant, Mihir ; Krovi, Hari ; Towsley, Don ; Tassiulas, Leandros ; Jiang, Liang ; Basu, Prithwish ; Englund, Dirk ; Guha, Saikat</creatorcontrib><description>Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory. Quantum internet: all roads lead to entanglement distribution The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-019-0139-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/187 ; 639/766/483/481 ; Classical and Quantum Gravitation ; Developmental stages ; Information theory ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Quantum theory ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2019-03, Vol.5 (1), Article 25</ispartof><rights>The Author(s) 2019</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</citedby><cites>FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</cites><orcidid>0000-0002-0000-9342 ; 0000-0002-1043-3489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41534-019-0139-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41534-019-0139-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Pant, Mihir</creatorcontrib><creatorcontrib>Krovi, Hari</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Basu, Prithwish</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Guha, Saikat</creatorcontrib><title>Routing entanglement in the quantum internet</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory. Quantum internet: all roads lead to entanglement distribution The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.</description><subject>639/624/1075/187</subject><subject>639/766/483/481</subject><subject>Classical and Quantum Gravitation</subject><subject>Developmental stages</subject><subject>Information theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAQx4MoOOY-gG8FX63eJW2aPMpQJwwE0eeQtmntWNMtSWF-e1Mq6Itwx93B73_H_Qm5RrhDYOLeZ5izLAWUMZlMT2dkQSHnKWeiOP_TX5KV9zuASFJBM1yQ27dhDJ1tE2ODtu3e9LFJOpuET5McR23D2McxGGdNuCIXjd57s_qpS_Lx9Pi-3qTb1-eX9cM2rVguQ6q1LjXWEsspoNKacypigqwqIyRgJAQFVogCm4ZJnjc5r6EqmczrrGZLcjPvPbjhOBof1G4YnY0nFUUJUnKkLFI4U5UbvHemUQfX9dp9KQQ1-aJmX1T8Vk2-qFPU0FnjI2tb4343_y_6BtitZPQ</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Pant, Mihir</creator><creator>Krovi, Hari</creator><creator>Towsley, Don</creator><creator>Tassiulas, Leandros</creator><creator>Jiang, Liang</creator><creator>Basu, Prithwish</creator><creator>Englund, Dirk</creator><creator>Guha, Saikat</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0000-9342</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid></search><sort><creationdate>20190313</creationdate><title>Routing entanglement in the quantum internet</title><author>Pant, Mihir ; Krovi, Hari ; Towsley, Don ; Tassiulas, Leandros ; Jiang, Liang ; Basu, Prithwish ; Englund, Dirk ; Guha, Saikat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-aaaba1d91b91b90caa662866209cce8901aaa82037871ff3965f56d0cb395d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/624/1075/187</topic><topic>639/766/483/481</topic><topic>Classical and Quantum Gravitation</topic><topic>Developmental stages</topic><topic>Information theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pant, Mihir</creatorcontrib><creatorcontrib>Krovi, Hari</creatorcontrib><creatorcontrib>Towsley, Don</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Basu, Prithwish</creatorcontrib><creatorcontrib>Englund, Dirk</creatorcontrib><creatorcontrib>Guha, Saikat</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pant, Mihir</au><au>Krovi, Hari</au><au>Towsley, Don</au><au>Tassiulas, Leandros</au><au>Jiang, Liang</au><au>Basu, Prithwish</au><au>Englund, Dirk</au><au>Guha, Saikat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Routing entanglement in the quantum internet</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2019-03-13</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>25</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Remote quantum entanglement can enable numerous applications including distributed quantum computation, secure communication, and precision sensing. We consider how a quantum network—nodes equipped with limited quantum processing capabilities connected via lossy optical links—can distribute high-rate entanglement simultaneously between multiple pairs of users. We develop protocols for such quantum “repeater” nodes, which enable a pair of users to achieve large gains in entanglement rates over using a linear chain of quantum repeaters, by exploiting the diversity of multiple paths in the network. Additionally, we develop repeater protocols that enable multiple user pairs to generate entanglement simultaneously at rates that can far exceed what is possible with repeaters time sharing among assisting individual entanglement flows. Our results suggest that the early-stage development of quantum memories with short coherence times and implementations of probabilistic Bell-state measurements can have a much more profound impact on quantum networks than may be apparent from analyzing linear repeater chains. This framework should spur the development of a general quantum network theory, bringing together quantum memory physics, quantum information theory, quantum error correction, and computer network theory. Quantum internet: all roads lead to entanglement distribution The best way to generate entanglement between two distant users in a quantum network is to look at many paths at the same time. Saikat Guha from University of Arizona led a team of American researchers which discovered an improved way to tackle the task of entanglement distribution. What they found is that, even in the case of only two users, having a network of links and using a multi-path strategy instead of a simple sequence of segments gives a large advantage in terms of achievable distance. The problem of generating entanglement (the notorious ‘spooky' quantum correlations) between distant locations is not only a matter of fundamental science, but it would allow to empower the Internet with a set of quantum-enhanced capabilities such as intrinsically-secure communication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-019-0139-x</doi><orcidid>https://orcid.org/0000-0002-0000-9342</orcidid><orcidid>https://orcid.org/0000-0002-1043-3489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2019-03, Vol.5 (1), Article 25
issn 2056-6387
2056-6387
language eng
recordid cdi_proquest_journals_2190996123
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free
subjects 639/624/1075/187
639/766/483/481
Classical and Quantum Gravitation
Developmental stages
Information theory
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Quantum theory
Relativity Theory
Spintronics
String Theory
title Routing entanglement in the quantum internet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Routing%20entanglement%20in%20the%20quantum%20internet&rft.jtitle=npj%20quantum%20information&rft.au=Pant,%20Mihir&rft.date=2019-03-13&rft.volume=5&rft.issue=1&rft.artnum=25&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-019-0139-x&rft_dat=%3Cproquest_cross%3E2190996123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190996123&rft_id=info:pmid/&rfr_iscdi=true