Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries

Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer international 2019-04, Vol.68 (4), p.684-693
Hauptverfasser: Grewal, Manjit Singh, Tanaka, Manabu, Kawakami, Hiroyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 4
container_start_page 684
container_title Polymer international
container_volume 68
creator Grewal, Manjit Singh
Tanaka, Manabu
Kawakami, Hiroyoshi
description Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry Crosslinked network polymer membranes with harmonious electrolyte characteristics were developed via the ‘click‐chemistry’ technique for applications in safe and high energy density all‐solid‐state lithium ion batteries.
doi_str_mv 10.1002/pi.5750
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190357166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190357166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3920-704d55a8a3a589955821e813550c398cdf061d1db4d38766f68915e0055649b33</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgrmCJBSCUMk7qJF5CxU8lJFjAOnKTCXXrxsF2VGWHxAU4IyfBbdmyeqPRpzfzHiGnDEYMIL5u1YhnHPbIgIHIImBxuk8GILiIcgbJITlybgEAuRBiQL5uVd01pVemkZq2RvcX6Oe9xgbpu-5Loy_pTDqsaGmNc1o1yzA36NfGLrf8Cq2j0lHUWHobFh4drY2lUuufz29ntKo26qVHqpWfq25Fw7lg6z1ahe6YHNRSOzz50yF5u797nTxGT88P08nNU1QmIoYog3HFucxlInl4nvM8ZpizhHMIQF5WNaSsYtVsXCV5lqZ1mgvGEYDzdCxmSTIkZzvf1pqPDp0vFqazIbcrYiYg4RlL00Cd76htYIt10Vq1krYvGBSbhotWFZuGA3m1I9dKY_8fVrxMt_Qv0md_FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190357166</pqid></control><display><type>article</type><title>Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grewal, Manjit Singh ; Tanaka, Manabu ; Kawakami, Hiroyoshi</creator><creatorcontrib>Grewal, Manjit Singh ; Tanaka, Manabu ; Kawakami, Hiroyoshi</creatorcontrib><description>Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry Crosslinked network polymer membranes with harmonious electrolyte characteristics were developed via the ‘click‐chemistry’ technique for applications in safe and high energy density all‐solid‐state lithium ion batteries.</description><identifier>ISSN: 0959-8103</identifier><identifier>EISSN: 1097-0126</identifier><identifier>DOI: 10.1002/pi.5750</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adaptability ; all‐solid‐state lithium metal battery ; Batteries ; crosslinked network polymer ; Crosslinking ; Electrolytes ; Fillers ; High temperature ; Ion currents ; ionic conductivity ; Ionic liquids ; Ions ; Light irradiation ; Lithium ; Lithium-ion batteries ; membrane ; Molten salt electrolytes ; Organic chemistry ; Performance enhancement ; Polyethylene glycol ; polymer electrolytes ; Polymers ; Product safety ; Radiation ; Rechargeable batteries ; Solid electrolytes ; Thermal stability ; Trifluoromethane</subject><ispartof>Polymer international, 2019-04, Vol.68 (4), p.684-693</ispartof><rights>2018 Society of Chemical Industry</rights><rights>Copyright © 2019 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3920-704d55a8a3a589955821e813550c398cdf061d1db4d38766f68915e0055649b33</citedby><cites>FETCH-LOGICAL-c3920-704d55a8a3a589955821e813550c398cdf061d1db4d38766f68915e0055649b33</cites><orcidid>0000-0002-1268-7386 ; 0000-0002-8077-8730 ; 0000-0002-5729-2724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpi.5750$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpi.5750$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Grewal, Manjit Singh</creatorcontrib><creatorcontrib>Tanaka, Manabu</creatorcontrib><creatorcontrib>Kawakami, Hiroyoshi</creatorcontrib><title>Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries</title><title>Polymer international</title><description>Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry Crosslinked network polymer membranes with harmonious electrolyte characteristics were developed via the ‘click‐chemistry’ technique for applications in safe and high energy density all‐solid‐state lithium ion batteries.</description><subject>Adaptability</subject><subject>all‐solid‐state lithium metal battery</subject><subject>Batteries</subject><subject>crosslinked network polymer</subject><subject>Crosslinking</subject><subject>Electrolytes</subject><subject>Fillers</subject><subject>High temperature</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Light irradiation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>membrane</subject><subject>Molten salt electrolytes</subject><subject>Organic chemistry</subject><subject>Performance enhancement</subject><subject>Polyethylene glycol</subject><subject>polymer electrolytes</subject><subject>Polymers</subject><subject>Product safety</subject><subject>Radiation</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Thermal stability</subject><subject>Trifluoromethane</subject><issn>0959-8103</issn><issn>1097-0126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgrmCJBSCUMk7qJF5CxU8lJFjAOnKTCXXrxsF2VGWHxAU4IyfBbdmyeqPRpzfzHiGnDEYMIL5u1YhnHPbIgIHIImBxuk8GILiIcgbJITlybgEAuRBiQL5uVd01pVemkZq2RvcX6Oe9xgbpu-5Loy_pTDqsaGmNc1o1yzA36NfGLrf8Cq2j0lHUWHobFh4drY2lUuufz29ntKo26qVHqpWfq25Fw7lg6z1ahe6YHNRSOzz50yF5u797nTxGT88P08nNU1QmIoYog3HFucxlInl4nvM8ZpizhHMIQF5WNaSsYtVsXCV5lqZ1mgvGEYDzdCxmSTIkZzvf1pqPDp0vFqazIbcrYiYg4RlL00Cd76htYIt10Vq1krYvGBSbhotWFZuGA3m1I9dKY_8fVrxMt_Qv0md_FQ</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Grewal, Manjit Singh</creator><creator>Tanaka, Manabu</creator><creator>Kawakami, Hiroyoshi</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1268-7386</orcidid><orcidid>https://orcid.org/0000-0002-8077-8730</orcidid><orcidid>https://orcid.org/0000-0002-5729-2724</orcidid></search><sort><creationdate>201904</creationdate><title>Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries</title><author>Grewal, Manjit Singh ; Tanaka, Manabu ; Kawakami, Hiroyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3920-704d55a8a3a589955821e813550c398cdf061d1db4d38766f68915e0055649b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptability</topic><topic>all‐solid‐state lithium metal battery</topic><topic>Batteries</topic><topic>crosslinked network polymer</topic><topic>Crosslinking</topic><topic>Electrolytes</topic><topic>Fillers</topic><topic>High temperature</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Light irradiation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>membrane</topic><topic>Molten salt electrolytes</topic><topic>Organic chemistry</topic><topic>Performance enhancement</topic><topic>Polyethylene glycol</topic><topic>polymer electrolytes</topic><topic>Polymers</topic><topic>Product safety</topic><topic>Radiation</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Thermal stability</topic><topic>Trifluoromethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grewal, Manjit Singh</creatorcontrib><creatorcontrib>Tanaka, Manabu</creatorcontrib><creatorcontrib>Kawakami, Hiroyoshi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grewal, Manjit Singh</au><au>Tanaka, Manabu</au><au>Kawakami, Hiroyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries</atitle><jtitle>Polymer international</jtitle><date>2019-04</date><risdate>2019</risdate><volume>68</volume><issue>4</issue><spage>684</spage><epage>693</epage><pages>684-693</pages><issn>0959-8103</issn><eissn>1097-0126</eissn><abstract>Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry Crosslinked network polymer membranes with harmonious electrolyte characteristics were developed via the ‘click‐chemistry’ technique for applications in safe and high energy density all‐solid‐state lithium ion batteries.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pi.5750</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1268-7386</orcidid><orcidid>https://orcid.org/0000-0002-8077-8730</orcidid><orcidid>https://orcid.org/0000-0002-5729-2724</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-8103
ispartof Polymer international, 2019-04, Vol.68 (4), p.684-693
issn 0959-8103
1097-0126
language eng
recordid cdi_proquest_journals_2190357166
source Wiley Online Library Journals Frontfile Complete
subjects Adaptability
all‐solid‐state lithium metal battery
Batteries
crosslinked network polymer
Crosslinking
Electrolytes
Fillers
High temperature
Ion currents
ionic conductivity
Ionic liquids
Ions
Light irradiation
Lithium
Lithium-ion batteries
membrane
Molten salt electrolytes
Organic chemistry
Performance enhancement
Polyethylene glycol
polymer electrolytes
Polymers
Product safety
Radiation
Rechargeable batteries
Solid electrolytes
Thermal stability
Trifluoromethane
title Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifunctional%20poly(ethylene%20glycol)%20based%20crosslinked%20network%20polymers%20as%20electrolytes%20for%20all%E2%80%90solid%E2%80%90state%20lithium%20ion%20batteries&rft.jtitle=Polymer%20international&rft.au=Grewal,%20Manjit%20Singh&rft.date=2019-04&rft.volume=68&rft.issue=4&rft.spage=684&rft.epage=693&rft.pages=684-693&rft.issn=0959-8103&rft.eissn=1097-0126&rft_id=info:doi/10.1002/pi.5750&rft_dat=%3Cproquest_cross%3E2190357166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190357166&rft_id=info:pmid/&rfr_iscdi=true