Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study

The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and Ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2019-03, Vol.131 (12), p.3938-3942
Hauptverfasser: de Aguirre, Adiran, Funes‐Ardoiz, Ignacio, Maseras, Feliu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3942
container_issue 12
container_start_page 3938
container_title Angewandte Chemie
container_volume 131
creator de Aguirre, Adiran
Funes‐Ardoiz, Ignacio
Maseras, Feliu
description The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory. Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.
doi_str_mv 10.1002/ange.201814233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190313382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190313382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTvFP_sxWorYgVS1SYbYc-6a4pHGJU9FsPALPyJOQUgQj012-c3Tuh9AlJQNKCLtW1RIGjNCUhozzI9SjEaMBT6LkGPUICcMgZaE4RWferwghMUtED-Vjt63xfGeNaqyr8KJRDXhsK6zwwlbLEvDDs2tcDcbt8MzqFyg_3z9ulQeDM9Wosm2sxlmrS7jBQ5y59WbbfHepsmvbmvYcnRSq9HDxc_voaTx6zO6C6Xxynw2ngaYx44ExIBQ3vFA0jmOj88TQME8TptOkCCMwrNCFgkQDExGkEURRXAiWM6E5kNDwPro69G5q97oF38hV91s3w0tGBeGU85R11OBA6dp5X0MhN7Vdq7qVlMi9R7n3KH89dgFxCLzZEtp_aDmcTUZ_2S8kRni5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190313382</pqid></control><display><type>article</type><title>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>de Aguirre, Adiran ; Funes‐Ardoiz, Ignacio ; Maseras, Feliu</creator><creatorcontrib>de Aguirre, Adiran ; Funes‐Ardoiz, Ignacio ; Maseras, Feliu</creatorcontrib><description>The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory. Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201814233</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemical synthesis ; Chemistry ; Computation ; Computer applications ; Cyclisierungen ; DFT-Rechnungen ; Electron transfer ; Inserts ; Nickel ; Oxidation ; Photochemie ; Reaktionsmechanismen ; Ruthenium ; Species</subject><ispartof>Angewandte Chemie, 2019-03, Vol.131 (12), p.3938-3942</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</citedby><cites>FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</cites><orcidid>0000-0001-8806-2019 ; 0000-0002-5843-9660 ; 0000-0001-7991-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201814233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201814233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>de Aguirre, Adiran</creatorcontrib><creatorcontrib>Funes‐Ardoiz, Ignacio</creatorcontrib><creatorcontrib>Maseras, Feliu</creatorcontrib><title>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</title><title>Angewandte Chemie</title><description>The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory. Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.</description><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Cyclisierungen</subject><subject>DFT-Rechnungen</subject><subject>Electron transfer</subject><subject>Inserts</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Photochemie</subject><subject>Reaktionsmechanismen</subject><subject>Ruthenium</subject><subject>Species</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTvFP_sxWorYgVS1SYbYc-6a4pHGJU9FsPALPyJOQUgQj012-c3Tuh9AlJQNKCLtW1RIGjNCUhozzI9SjEaMBT6LkGPUICcMgZaE4RWferwghMUtED-Vjt63xfGeNaqyr8KJRDXhsK6zwwlbLEvDDs2tcDcbt8MzqFyg_3z9ulQeDM9Wosm2sxlmrS7jBQ5y59WbbfHepsmvbmvYcnRSq9HDxc_voaTx6zO6C6Xxynw2ngaYx44ExIBQ3vFA0jmOj88TQME8TptOkCCMwrNCFgkQDExGkEURRXAiWM6E5kNDwPro69G5q97oF38hV91s3w0tGBeGU85R11OBA6dp5X0MhN7Vdq7qVlMi9R7n3KH89dgFxCLzZEtp_aDmcTUZ_2S8kRni5</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>de Aguirre, Adiran</creator><creator>Funes‐Ardoiz, Ignacio</creator><creator>Maseras, Feliu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8806-2019</orcidid><orcidid>https://orcid.org/0000-0002-5843-9660</orcidid><orcidid>https://orcid.org/0000-0001-7991-6406</orcidid></search><sort><creationdate>20190318</creationdate><title>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</title><author>de Aguirre, Adiran ; Funes‐Ardoiz, Ignacio ; Maseras, Feliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Cyclisierungen</topic><topic>DFT-Rechnungen</topic><topic>Electron transfer</topic><topic>Inserts</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Photochemie</topic><topic>Reaktionsmechanismen</topic><topic>Ruthenium</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Aguirre, Adiran</creatorcontrib><creatorcontrib>Funes‐Ardoiz, Ignacio</creatorcontrib><creatorcontrib>Maseras, Feliu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Aguirre, Adiran</au><au>Funes‐Ardoiz, Ignacio</au><au>Maseras, Feliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</atitle><jtitle>Angewandte Chemie</jtitle><date>2019-03-18</date><risdate>2019</risdate><volume>131</volume><issue>12</issue><spage>3938</spage><epage>3942</epage><pages>3938-3942</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory. Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201814233</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8806-2019</orcidid><orcidid>https://orcid.org/0000-0002-5843-9660</orcidid><orcidid>https://orcid.org/0000-0001-7991-6406</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2019-03, Vol.131 (12), p.3938-3942
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2190313382
source Wiley Online Library - AutoHoldings Journals
subjects Catalysis
Chemical synthesis
Chemistry
Computation
Computer applications
Cyclisierungen
DFT-Rechnungen
Electron transfer
Inserts
Nickel
Oxidation
Photochemie
Reaktionsmechanismen
Ruthenium
Species
title Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20Oxidation%20States%20in%20a%20Single%20Photoredox%20Nickel%E2%80%90Based%20Catalytic%20Cycle:%20A%20Computational%20Study&rft.jtitle=Angewandte%20Chemie&rft.au=de%E2%80%85Aguirre,%20Adiran&rft.date=2019-03-18&rft.volume=131&rft.issue=12&rft.spage=3938&rft.epage=3942&rft.pages=3938-3942&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201814233&rft_dat=%3Cproquest_cross%3E2190313382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190313382&rft_id=info:pmid/&rfr_iscdi=true