Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study
The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and Ni...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2019-03, Vol.131 (12), p.3938-3942 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3942 |
---|---|
container_issue | 12 |
container_start_page | 3938 |
container_title | Angewandte Chemie |
container_volume | 131 |
creator | de Aguirre, Adiran Funes‐Ardoiz, Ignacio Maseras, Feliu |
description | The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory.
Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten. |
doi_str_mv | 10.1002/ange.201814233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190313382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190313382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTvFP_sxWorYgVS1SYbYc-6a4pHGJU9FsPALPyJOQUgQj012-c3Tuh9AlJQNKCLtW1RIGjNCUhozzI9SjEaMBT6LkGPUICcMgZaE4RWferwghMUtED-Vjt63xfGeNaqyr8KJRDXhsK6zwwlbLEvDDs2tcDcbt8MzqFyg_3z9ulQeDM9Wosm2sxlmrS7jBQ5y59WbbfHepsmvbmvYcnRSq9HDxc_voaTx6zO6C6Xxynw2ngaYx44ExIBQ3vFA0jmOj88TQME8TptOkCCMwrNCFgkQDExGkEURRXAiWM6E5kNDwPro69G5q97oF38hV91s3w0tGBeGU85R11OBA6dp5X0MhN7Vdq7qVlMi9R7n3KH89dgFxCLzZEtp_aDmcTUZ_2S8kRni5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190313382</pqid></control><display><type>article</type><title>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>de Aguirre, Adiran ; Funes‐Ardoiz, Ignacio ; Maseras, Feliu</creator><creatorcontrib>de Aguirre, Adiran ; Funes‐Ardoiz, Ignacio ; Maseras, Feliu</creatorcontrib><description>The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory.
Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201814233</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemical synthesis ; Chemistry ; Computation ; Computer applications ; Cyclisierungen ; DFT-Rechnungen ; Electron transfer ; Inserts ; Nickel ; Oxidation ; Photochemie ; Reaktionsmechanismen ; Ruthenium ; Species</subject><ispartof>Angewandte Chemie, 2019-03, Vol.131 (12), p.3938-3942</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</citedby><cites>FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</cites><orcidid>0000-0001-8806-2019 ; 0000-0002-5843-9660 ; 0000-0001-7991-6406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201814233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201814233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>de Aguirre, Adiran</creatorcontrib><creatorcontrib>Funes‐Ardoiz, Ignacio</creatorcontrib><creatorcontrib>Maseras, Feliu</creatorcontrib><title>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</title><title>Angewandte Chemie</title><description>The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory.
Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.</description><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Cyclisierungen</subject><subject>DFT-Rechnungen</subject><subject>Electron transfer</subject><subject>Inserts</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Photochemie</subject><subject>Reaktionsmechanismen</subject><subject>Ruthenium</subject><subject>Species</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTvFP_sxWorYgVS1SYbYc-6a4pHGJU9FsPALPyJOQUgQj012-c3Tuh9AlJQNKCLtW1RIGjNCUhozzI9SjEaMBT6LkGPUICcMgZaE4RWferwghMUtED-Vjt63xfGeNaqyr8KJRDXhsK6zwwlbLEvDDs2tcDcbt8MzqFyg_3z9ulQeDM9Wosm2sxlmrS7jBQ5y59WbbfHepsmvbmvYcnRSq9HDxc_voaTx6zO6C6Xxynw2ngaYx44ExIBQ3vFA0jmOj88TQME8TptOkCCMwrNCFgkQDExGkEURRXAiWM6E5kNDwPro69G5q97oF38hV91s3w0tGBeGU85R11OBA6dp5X0MhN7Vdq7qVlMi9R7n3KH89dgFxCLzZEtp_aDmcTUZ_2S8kRni5</recordid><startdate>20190318</startdate><enddate>20190318</enddate><creator>de Aguirre, Adiran</creator><creator>Funes‐Ardoiz, Ignacio</creator><creator>Maseras, Feliu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8806-2019</orcidid><orcidid>https://orcid.org/0000-0002-5843-9660</orcidid><orcidid>https://orcid.org/0000-0001-7991-6406</orcidid></search><sort><creationdate>20190318</creationdate><title>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</title><author>de Aguirre, Adiran ; Funes‐Ardoiz, Ignacio ; Maseras, Feliu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1623-dde9a3d3fa1666dcb7d14b872c87f45ed2fcfae7ce295e85e556f92b29c3e04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Cyclisierungen</topic><topic>DFT-Rechnungen</topic><topic>Electron transfer</topic><topic>Inserts</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Photochemie</topic><topic>Reaktionsmechanismen</topic><topic>Ruthenium</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Aguirre, Adiran</creatorcontrib><creatorcontrib>Funes‐Ardoiz, Ignacio</creatorcontrib><creatorcontrib>Maseras, Feliu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Aguirre, Adiran</au><au>Funes‐Ardoiz, Ignacio</au><au>Maseras, Feliu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study</atitle><jtitle>Angewandte Chemie</jtitle><date>2019-03-18</date><risdate>2019</risdate><volume>131</volume><issue>12</issue><spage>3938</spage><epage>3942</epage><pages>3938-3942</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory.
Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201814233</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8806-2019</orcidid><orcidid>https://orcid.org/0000-0002-5843-9660</orcidid><orcidid>https://orcid.org/0000-0001-7991-6406</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2019-03, Vol.131 (12), p.3938-3942 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2190313382 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Catalysis Chemical synthesis Chemistry Computation Computer applications Cyclisierungen DFT-Rechnungen Electron transfer Inserts Nickel Oxidation Photochemie Reaktionsmechanismen Ruthenium Species |
title | Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20Oxidation%20States%20in%20a%20Single%20Photoredox%20Nickel%E2%80%90Based%20Catalytic%20Cycle:%20A%20Computational%20Study&rft.jtitle=Angewandte%20Chemie&rft.au=de%E2%80%85Aguirre,%20Adiran&rft.date=2019-03-18&rft.volume=131&rft.issue=12&rft.spage=3938&rft.epage=3942&rft.pages=3938-3942&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201814233&rft_dat=%3Cproquest_cross%3E2190313382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190313382&rft_id=info:pmid/&rfr_iscdi=true |