Four Oxidation States in a Single Photoredox Nickel‐Based Catalytic Cycle: A Computational Study

The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and Ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2019-03, Vol.131 (12), p.3938-3942
Hauptverfasser: de Aguirre, Adiran, Funes‐Ardoiz, Ignacio, Maseras, Feliu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The computational characterization of the full catalytic cycle for the synthesis of indoline from the reaction between iodoacetanilide and a terminal alkene catalyzed by a nickel complex and a photoactive ruthenium species is presented. A variety of oxidation states of nickel, Ni0, NiI, NiII, and NiIII, is shown to participate in the mechanism. Ni0 is necessary for the oxidative addition of the C−I bond, which goes through a NiI intermediate and results in a NiII species. The NiII species inserts into the alkene, but does not undergo the reductive elimination necessary for C−N bond formation. This oxidatively induced reductive elimination can be accomplished only after oxidation to NiIII by the photoactive ruthenium species. All the reaction steps are computationally characterized, and the barriers for the single‐electron transfer steps calculated using a modified version of the Marcus Theory. Ni0/NiI/NiII/NiIII‐Suppe: Bis zu vier verschiedene Oxidationsstufen von Nickel werden in dem photoredoxkatalytischen Prozess durchlaufen, der zur Kupplung von Iodacetaniliden und Alkenen führt. DFT‐Rechnungen zeigen einen komplexen Mechanismus unter Beteiligung von drei Einelektronentransferschritten.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201814233