Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications

Low-temperature-fired Li 2 Zn 1−x Co x Ti 3 O 8 (x = 0, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics with 1.5 wt% Li 2 O–B 2 O 3 –SiO 2 –CaO–Al 2 O 3 (LBSCA) glass as sintering aid were attained through a traditional solid-state-reaction method, and the relationship between their structures and microwave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-04, Vol.30 (8), p.7711-7716
Hauptverfasser: Jing, Xiaolin, Su, Hua, Jing, Yulan, Li, Yuanxun, Tang, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7716
container_issue 8
container_start_page 7711
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Jing, Xiaolin
Su, Hua
Jing, Yulan
Li, Yuanxun
Tang, Xiaoli
description Low-temperature-fired Li 2 Zn 1−x Co x Ti 3 O 8 (x = 0, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics with 1.5 wt% Li 2 O–B 2 O 3 –SiO 2 –CaO–Al 2 O 3 (LBSCA) glass as sintering aid were attained through a traditional solid-state-reaction method, and the relationship between their structures and microwave dielectric properties were thoroughly investigated. X-ray diffraction patterns revealed that the solid solutions composed of Li 2 ZnTi 3 O 8 and Li 2 CoTi 3 O 8 were produced. The main peaks were identified with the cubic spinel phase of the Li 2 (Zn,Co)Ti 3 O 8 . Co substitution successfully lowered the sintering temperature of Li 2 ZnTi 3 O 8 to approximately 900 °C and accelerated its densification when LBSCA glass was used as the sintering aid. The cobalt content considerably influenced grain homogeneity, grain size and dielectric polarizability, as well as the variation in relative permittivity (ε r ) and quality factor ( Q  ×  f ). When x = 0.04, Li 2 Zn 0.96 Co 0.04 Ti 3 O 8 ceramic sintered at 900 °C had the most uniform grain size and exhibited optimum microwave dielectric properties, having a relative permittivity of 21.61, Q  ×  f of 79,100 GHz and temperature coefficient of resonance frequency (τ f ) of − 12.3 ppm/°C. Thus, it showed potential for low temperature co-fired ceramic applications.
doi_str_mv 10.1007/s10854-019-01087-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190269644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190269644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b03eb828ee8cce29677960e0978cbd2df0090e113941e5683a30f28fad66590c3</originalsourceid><addsrcrecordid>eNp9kb9uUzEUhy1UJNLCCzBZYqGD22P7_rEHhioqpVKkDAQJsViO77ngKrm-2Ddp2DqWtbxDHyxPgkMilanDkZff9x35_Ah5y-GMA9TniYMqCwZc5wFVs_IFGfGylqxQ4usRGYEua1aUQrwixyndAEBVSDUij5-HuHLDKiK1XUOX3sVwa9dIG48LdEP0js7xh137sIo0tHQRbtmAyx6j3VGs9REbOvHiW8e39w-bcdjMvJwq-n6zvfv9IQ9s7_7AGdSn1GUob0i0DXEnov-JqAsH1yFFbd8vvLODD116TV62dpHwzeE9IV8-Xs7Gn9hkenU9vpgwJwo9sDlInCuhEJVzKHRV17oCBF0rN29E0wJoQM6lLjiWlZJWQitUa5uqKjU4eULe7b19DD9XmAZzk__d5ZVGcA2i0lVR5JTYp_KxUorYmj76pY2_DAez68Ps-zC5D_OvD1NmSO6hlMPdd4xP6meovxAbkyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190269644</pqid></control><display><type>article</type><title>Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jing, Xiaolin ; Su, Hua ; Jing, Yulan ; Li, Yuanxun ; Tang, Xiaoli</creator><creatorcontrib>Jing, Xiaolin ; Su, Hua ; Jing, Yulan ; Li, Yuanxun ; Tang, Xiaoli</creatorcontrib><description>Low-temperature-fired Li 2 Zn 1−x Co x Ti 3 O 8 (x = 0, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics with 1.5 wt% Li 2 O–B 2 O 3 –SiO 2 –CaO–Al 2 O 3 (LBSCA) glass as sintering aid were attained through a traditional solid-state-reaction method, and the relationship between their structures and microwave dielectric properties were thoroughly investigated. X-ray diffraction patterns revealed that the solid solutions composed of Li 2 ZnTi 3 O 8 and Li 2 CoTi 3 O 8 were produced. The main peaks were identified with the cubic spinel phase of the Li 2 (Zn,Co)Ti 3 O 8 . Co substitution successfully lowered the sintering temperature of Li 2 ZnTi 3 O 8 to approximately 900 °C and accelerated its densification when LBSCA glass was used as the sintering aid. The cobalt content considerably influenced grain homogeneity, grain size and dielectric polarizability, as well as the variation in relative permittivity (ε r ) and quality factor ( Q  ×  f ). When x = 0.04, Li 2 Zn 0.96 Co 0.04 Ti 3 O 8 ceramic sintered at 900 °C had the most uniform grain size and exhibited optimum microwave dielectric properties, having a relative permittivity of 21.61, Q  ×  f of 79,100 GHz and temperature coefficient of resonance frequency (τ f ) of − 12.3 ppm/°C. Thus, it showed potential for low temperature co-fired ceramic applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01087-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum oxide ; Boron oxides ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Densification ; Dielectric properties ; Diffraction patterns ; Glass ; Grain size ; Lithium oxides ; Low temperature ; Materials Science ; Optical and Electronic Materials ; Permittivity ; Q factors ; Silicon dioxide ; Sintering ; Solid solutions ; Substitution reactions ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2019-04, Vol.30 (8), p.7711-7716</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b03eb828ee8cce29677960e0978cbd2df0090e113941e5683a30f28fad66590c3</citedby><cites>FETCH-LOGICAL-c249t-b03eb828ee8cce29677960e0978cbd2df0090e113941e5683a30f28fad66590c3</cites><orcidid>0000-0002-6951-9252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01087-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01087-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Jing, Xiaolin</creatorcontrib><creatorcontrib>Su, Hua</creatorcontrib><creatorcontrib>Jing, Yulan</creatorcontrib><creatorcontrib>Li, Yuanxun</creatorcontrib><creatorcontrib>Tang, Xiaoli</creatorcontrib><title>Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Low-temperature-fired Li 2 Zn 1−x Co x Ti 3 O 8 (x = 0, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics with 1.5 wt% Li 2 O–B 2 O 3 –SiO 2 –CaO–Al 2 O 3 (LBSCA) glass as sintering aid were attained through a traditional solid-state-reaction method, and the relationship between their structures and microwave dielectric properties were thoroughly investigated. X-ray diffraction patterns revealed that the solid solutions composed of Li 2 ZnTi 3 O 8 and Li 2 CoTi 3 O 8 were produced. The main peaks were identified with the cubic spinel phase of the Li 2 (Zn,Co)Ti 3 O 8 . Co substitution successfully lowered the sintering temperature of Li 2 ZnTi 3 O 8 to approximately 900 °C and accelerated its densification when LBSCA glass was used as the sintering aid. The cobalt content considerably influenced grain homogeneity, grain size and dielectric polarizability, as well as the variation in relative permittivity (ε r ) and quality factor ( Q  ×  f ). When x = 0.04, Li 2 Zn 0.96 Co 0.04 Ti 3 O 8 ceramic sintered at 900 °C had the most uniform grain size and exhibited optimum microwave dielectric properties, having a relative permittivity of 21.61, Q  ×  f of 79,100 GHz and temperature coefficient of resonance frequency (τ f ) of − 12.3 ppm/°C. Thus, it showed potential for low temperature co-fired ceramic applications.</description><subject>Aluminum oxide</subject><subject>Boron oxides</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Densification</subject><subject>Dielectric properties</subject><subject>Diffraction patterns</subject><subject>Glass</subject><subject>Grain size</subject><subject>Lithium oxides</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Permittivity</subject><subject>Q factors</subject><subject>Silicon dioxide</subject><subject>Sintering</subject><subject>Solid solutions</subject><subject>Substitution reactions</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kb9uUzEUhy1UJNLCCzBZYqGD22P7_rEHhioqpVKkDAQJsViO77ngKrm-2Ddp2DqWtbxDHyxPgkMilanDkZff9x35_Ah5y-GMA9TniYMqCwZc5wFVs_IFGfGylqxQ4usRGYEua1aUQrwixyndAEBVSDUij5-HuHLDKiK1XUOX3sVwa9dIG48LdEP0js7xh137sIo0tHQRbtmAyx6j3VGs9REbOvHiW8e39w-bcdjMvJwq-n6zvfv9IQ9s7_7AGdSn1GUob0i0DXEnov-JqAsH1yFFbd8vvLODD116TV62dpHwzeE9IV8-Xs7Gn9hkenU9vpgwJwo9sDlInCuhEJVzKHRV17oCBF0rN29E0wJoQM6lLjiWlZJWQitUa5uqKjU4eULe7b19DD9XmAZzk__d5ZVGcA2i0lVR5JTYp_KxUorYmj76pY2_DAez68Ps-zC5D_OvD1NmSO6hlMPdd4xP6meovxAbkyE</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Jing, Xiaolin</creator><creator>Su, Hua</creator><creator>Jing, Yulan</creator><creator>Li, Yuanxun</creator><creator>Tang, Xiaoli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6951-9252</orcidid></search><sort><creationdate>20190401</creationdate><title>Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications</title><author>Jing, Xiaolin ; Su, Hua ; Jing, Yulan ; Li, Yuanxun ; Tang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b03eb828ee8cce29677960e0978cbd2df0090e113941e5683a30f28fad66590c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum oxide</topic><topic>Boron oxides</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Densification</topic><topic>Dielectric properties</topic><topic>Diffraction patterns</topic><topic>Glass</topic><topic>Grain size</topic><topic>Lithium oxides</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Permittivity</topic><topic>Q factors</topic><topic>Silicon dioxide</topic><topic>Sintering</topic><topic>Solid solutions</topic><topic>Substitution reactions</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Xiaolin</creatorcontrib><creatorcontrib>Su, Hua</creatorcontrib><creatorcontrib>Jing, Yulan</creatorcontrib><creatorcontrib>Li, Yuanxun</creatorcontrib><creatorcontrib>Tang, Xiaoli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Xiaolin</au><au>Su, Hua</au><au>Jing, Yulan</au><au>Li, Yuanxun</au><au>Tang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>8</issue><spage>7711</spage><epage>7716</epage><pages>7711-7716</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Low-temperature-fired Li 2 Zn 1−x Co x Ti 3 O 8 (x = 0, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics with 1.5 wt% Li 2 O–B 2 O 3 –SiO 2 –CaO–Al 2 O 3 (LBSCA) glass as sintering aid were attained through a traditional solid-state-reaction method, and the relationship between their structures and microwave dielectric properties were thoroughly investigated. X-ray diffraction patterns revealed that the solid solutions composed of Li 2 ZnTi 3 O 8 and Li 2 CoTi 3 O 8 were produced. The main peaks were identified with the cubic spinel phase of the Li 2 (Zn,Co)Ti 3 O 8 . Co substitution successfully lowered the sintering temperature of Li 2 ZnTi 3 O 8 to approximately 900 °C and accelerated its densification when LBSCA glass was used as the sintering aid. The cobalt content considerably influenced grain homogeneity, grain size and dielectric polarizability, as well as the variation in relative permittivity (ε r ) and quality factor ( Q  ×  f ). When x = 0.04, Li 2 Zn 0.96 Co 0.04 Ti 3 O 8 ceramic sintered at 900 °C had the most uniform grain size and exhibited optimum microwave dielectric properties, having a relative permittivity of 21.61, Q  ×  f of 79,100 GHz and temperature coefficient of resonance frequency (τ f ) of − 12.3 ppm/°C. Thus, it showed potential for low temperature co-fired ceramic applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01087-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6951-9252</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-04, Vol.30 (8), p.7711-7716
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2190269644
source SpringerLink Journals - AutoHoldings
subjects Aluminum oxide
Boron oxides
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Densification
Dielectric properties
Diffraction patterns
Glass
Grain size
Lithium oxides
Low temperature
Materials Science
Optical and Electronic Materials
Permittivity
Q factors
Silicon dioxide
Sintering
Solid solutions
Substitution reactions
X-ray diffraction
title Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20microwave%20dielectric%20behaviour%20of%20low-temperature-fired%20Li2Zn1%E2%88%92xCoxTi3O8%20(x%E2%80%89=%E2%80%890%E2%80%930.07)%20ceramics%20for%20low%20temperature%20co-fired%20ceramic%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Jing,%20Xiaolin&rft.date=2019-04-01&rft.volume=30&rft.issue=8&rft.spage=7711&rft.epage=7716&rft.pages=7711-7716&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01087-5&rft_dat=%3Cproquest_cross%3E2190269644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2190269644&rft_id=info:pmid/&rfr_iscdi=true