Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package
Research synthesis, such as comparative and meta‐analyses, requires the extraction of effect sizes from primary literature, which are commonly calculated from descriptive statistics. However, the exact values of such statistics are commonly hidden in figures. Extracting descriptive statistics from f...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2019-03, Vol.10 (3), p.426-431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 3 |
container_start_page | 426 |
container_title | Methods in ecology and evolution |
container_volume | 10 |
creator | Pick, Joel L. Nakagawa, Shinichi Noble, Daniel W. A. Price, Samantha |
description | Research synthesis, such as comparative and meta‐analyses, requires the extraction of effect sizes from primary literature, which are commonly calculated from descriptive statistics. However, the exact values of such statistics are commonly hidden in figures.
Extracting descriptive statistics from figures can be a slow process that is not easily reproducible. Additionally, current software lacks an ability to incorporate important metadata (e.g. sample sizes, treatment/variable names) about experiments and is not integrated with other software to streamline analysis pipelines.
Here we present the r package metaDigitise which extracts descriptive statistics such as means, standard deviations and correlations from four plot types: (a) mean/error plots (e.g. bar graphs with standard errors), (b) box plots, (c) scatter plots and (d) histograms. metaDigitise is user‐friendly and easy to learn as it interactively guides the user through the data extraction process. Notably, it enables large‐scale extraction by automatically loading image files, letting the user stop processing, edit and add to the resulting data‐frame at any point.
Digitised data can be easily re‐plotted and checked, facilitating reproducible data extraction from plots with little inter‐observer bias. We hope that by making the process of figure extraction more flexible and easy to conduct, it will improve the transparency and quality of meta‐analyses in the future. |
doi_str_mv | 10.1111/2041-210X.13118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189903280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189903280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-f608a7d2832e4ac919939ff277b88a3ec475b57e37901974a6c796e276ab3c873</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUDKJg0Z69Lni17X6k2V1vUusHVASp4G3ZbF6SrWkTNxtsb_4Ef6O_xMQU8eZc3vCYeY-ZIDgjeExaTCgOyYgS_DImjBBxEAx-N4d_-HEwrOsVbsGExDQcBNUTVK5MGmPjAi5QWsC2Y0hvEpTbLP_6-PS5K5ssrxqPEu01gq132nhbblDqyjWqnF1rt0OF9eC0bxxcomUOaA1eX9vMelsDcqjS5lVncBocpbqoYbifJ8HzzXw5uxstHm_vZ1eLkWFTLkZphIXmCRWMQqiNJFIymaaU81gIzcCEfBpPOTAuMZE81JHhMgLKIx0zIzg7Cc77u228twZqr1Zl4zbtS0WJkBIzKnCrmvQq48q6dpCqfRpFsOqaVV13qutO_TTbOqLe8W4L2P0nVw_zOeuN39KCfFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189903280</pqid></control><display><type>article</type><title>Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Alma/SFX Local Collection</source><creator>Pick, Joel L. ; Nakagawa, Shinichi ; Noble, Daniel W. A. ; Price, Samantha</creator><contributor>Price, Samantha</contributor><creatorcontrib>Pick, Joel L. ; Nakagawa, Shinichi ; Noble, Daniel W. A. ; Price, Samantha ; Price, Samantha</creatorcontrib><description>Research synthesis, such as comparative and meta‐analyses, requires the extraction of effect sizes from primary literature, which are commonly calculated from descriptive statistics. However, the exact values of such statistics are commonly hidden in figures.
Extracting descriptive statistics from figures can be a slow process that is not easily reproducible. Additionally, current software lacks an ability to incorporate important metadata (e.g. sample sizes, treatment/variable names) about experiments and is not integrated with other software to streamline analysis pipelines.
Here we present the r package metaDigitise which extracts descriptive statistics such as means, standard deviations and correlations from four plot types: (a) mean/error plots (e.g. bar graphs with standard errors), (b) box plots, (c) scatter plots and (d) histograms. metaDigitise is user‐friendly and easy to learn as it interactively guides the user through the data extraction process. Notably, it enables large‐scale extraction by automatically loading image files, letting the user stop processing, edit and add to the resulting data‐frame at any point.
Digitised data can be easily re‐plotted and checked, facilitating reproducible data extraction from plots with little inter‐observer bias. We hope that by making the process of figure extraction more flexible and easy to conduct, it will improve the transparency and quality of meta‐analyses in the future.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13118</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>comparative analysis ; Computer programs ; data extraction ; descriptive statistics ; Digitization ; figures ; Histograms ; Meta-analysis ; Reproducibility ; Software ; Statistical analysis ; Statistics</subject><ispartof>Methods in ecology and evolution, 2019-03, Vol.10 (3), p.426-431</ispartof><rights>2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2019 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-f608a7d2832e4ac919939ff277b88a3ec475b57e37901974a6c796e276ab3c873</citedby><cites>FETCH-LOGICAL-c3578-f608a7d2832e4ac919939ff277b88a3ec475b57e37901974a6c796e276ab3c873</cites><orcidid>0000-0001-9460-8743 ; 0000-0002-6295-3742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13118$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13118$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><contributor>Price, Samantha</contributor><creatorcontrib>Pick, Joel L.</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><creatorcontrib>Noble, Daniel W. A.</creatorcontrib><creatorcontrib>Price, Samantha</creatorcontrib><title>Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package</title><title>Methods in ecology and evolution</title><description>Research synthesis, such as comparative and meta‐analyses, requires the extraction of effect sizes from primary literature, which are commonly calculated from descriptive statistics. However, the exact values of such statistics are commonly hidden in figures.
Extracting descriptive statistics from figures can be a slow process that is not easily reproducible. Additionally, current software lacks an ability to incorporate important metadata (e.g. sample sizes, treatment/variable names) about experiments and is not integrated with other software to streamline analysis pipelines.
Here we present the r package metaDigitise which extracts descriptive statistics such as means, standard deviations and correlations from four plot types: (a) mean/error plots (e.g. bar graphs with standard errors), (b) box plots, (c) scatter plots and (d) histograms. metaDigitise is user‐friendly and easy to learn as it interactively guides the user through the data extraction process. Notably, it enables large‐scale extraction by automatically loading image files, letting the user stop processing, edit and add to the resulting data‐frame at any point.
Digitised data can be easily re‐plotted and checked, facilitating reproducible data extraction from plots with little inter‐observer bias. We hope that by making the process of figure extraction more flexible and easy to conduct, it will improve the transparency and quality of meta‐analyses in the future.</description><subject>comparative analysis</subject><subject>Computer programs</subject><subject>data extraction</subject><subject>descriptive statistics</subject><subject>Digitization</subject><subject>figures</subject><subject>Histograms</subject><subject>Meta-analysis</subject><subject>Reproducibility</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AUDKJg0Z69Lni17X6k2V1vUusHVASp4G3ZbF6SrWkTNxtsb_4Ef6O_xMQU8eZc3vCYeY-ZIDgjeExaTCgOyYgS_DImjBBxEAx-N4d_-HEwrOsVbsGExDQcBNUTVK5MGmPjAi5QWsC2Y0hvEpTbLP_6-PS5K5ssrxqPEu01gq132nhbblDqyjWqnF1rt0OF9eC0bxxcomUOaA1eX9vMelsDcqjS5lVncBocpbqoYbifJ8HzzXw5uxstHm_vZ1eLkWFTLkZphIXmCRWMQqiNJFIymaaU81gIzcCEfBpPOTAuMZE81JHhMgLKIx0zIzg7Cc77u228twZqr1Zl4zbtS0WJkBIzKnCrmvQq48q6dpCqfRpFsOqaVV13qutO_TTbOqLe8W4L2P0nVw_zOeuN39KCfFQ</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Pick, Joel L.</creator><creator>Nakagawa, Shinichi</creator><creator>Noble, Daniel W. A.</creator><creator>Price, Samantha</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-9460-8743</orcidid><orcidid>https://orcid.org/0000-0002-6295-3742</orcidid></search><sort><creationdate>201903</creationdate><title>Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package</title><author>Pick, Joel L. ; Nakagawa, Shinichi ; Noble, Daniel W. A. ; Price, Samantha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-f608a7d2832e4ac919939ff277b88a3ec475b57e37901974a6c796e276ab3c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>comparative analysis</topic><topic>Computer programs</topic><topic>data extraction</topic><topic>descriptive statistics</topic><topic>Digitization</topic><topic>figures</topic><topic>Histograms</topic><topic>Meta-analysis</topic><topic>Reproducibility</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pick, Joel L.</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><creatorcontrib>Noble, Daniel W. A.</creatorcontrib><creatorcontrib>Price, Samantha</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pick, Joel L.</au><au>Nakagawa, Shinichi</au><au>Noble, Daniel W. A.</au><au>Price, Samantha</au><au>Price, Samantha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2019-03</date><risdate>2019</risdate><volume>10</volume><issue>3</issue><spage>426</spage><epage>431</epage><pages>426-431</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Research synthesis, such as comparative and meta‐analyses, requires the extraction of effect sizes from primary literature, which are commonly calculated from descriptive statistics. However, the exact values of such statistics are commonly hidden in figures.
Extracting descriptive statistics from figures can be a slow process that is not easily reproducible. Additionally, current software lacks an ability to incorporate important metadata (e.g. sample sizes, treatment/variable names) about experiments and is not integrated with other software to streamline analysis pipelines.
Here we present the r package metaDigitise which extracts descriptive statistics such as means, standard deviations and correlations from four plot types: (a) mean/error plots (e.g. bar graphs with standard errors), (b) box plots, (c) scatter plots and (d) histograms. metaDigitise is user‐friendly and easy to learn as it interactively guides the user through the data extraction process. Notably, it enables large‐scale extraction by automatically loading image files, letting the user stop processing, edit and add to the resulting data‐frame at any point.
Digitised data can be easily re‐plotted and checked, facilitating reproducible data extraction from plots with little inter‐observer bias. We hope that by making the process of figure extraction more flexible and easy to conduct, it will improve the transparency and quality of meta‐analyses in the future.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/2041-210X.13118</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9460-8743</orcidid><orcidid>https://orcid.org/0000-0002-6295-3742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2019-03, Vol.10 (3), p.426-431 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_proquest_journals_2189903280 |
source | Wiley Online Library - AutoHoldings Journals; Alma/SFX Local Collection |
subjects | comparative analysis Computer programs data extraction descriptive statistics Digitization figures Histograms Meta-analysis Reproducibility Software Statistical analysis Statistics |
title | Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T11%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducible,%20flexible%20and%20high%E2%80%90throughput%20data%20extraction%20from%20primary%20literature:%20The%20metaDigitise%20r%20package&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Pick,%20Joel%20L.&rft.date=2019-03&rft.volume=10&rft.issue=3&rft.spage=426&rft.epage=431&rft.pages=426-431&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13118&rft_dat=%3Cproquest_cross%3E2189903280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189903280&rft_id=info:pmid/&rfr_iscdi=true |