Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing

Summary This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2019-04, Vol.31 (7), p.n/a
Hauptverfasser: Haidri, R.A., Katti, C.P., Saxena, P.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Concurrency and computation
container_volume 31
creator Haidri, R.A.
Katti, C.P.
Saxena, P.C.
description Summary This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.
doi_str_mv 10.1002/cpe.5006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189873676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189873676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmaSyczs5ShXqCgC12HTC5t6nQyJhlLd_oGPqNPYmrFnatz-M_Hf-AD4ByjCUaIXMleT3KE2AEY4ZySDDE6PfzbCTsGJyGsEMIYUTwCH7UL8ev9UxujZbRvGiotVGs7nUKxEV7DEJ1cihCthEEutRrSdZFSL6JebKFxHm6cfzGt20DR962VIlrXBeg6-GZ9HEQL10IuU2eAtoOydYOC0q37IaamU3BkRBv02e8cg-eb2VN9l80fbu_r63kmSUVZpnQl8hwXeS6bypSGUY0rhlkjSiNLRgyWjBWq1IYw3AhU5lShgrJGCUWmU0rH4GLf23v3OugQ-coNvksvOcFlVSa2YIm63FPSuxC8Nrz3di38lmPEd4J5Esx3ghOa7dGNbfX2X47Xj7Mf_htEc4Em</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189873676</pqid></control><display><type>article</type><title>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Haidri, R.A. ; Katti, C.P. ; Saxena, P.C.</creator><creatorcontrib>Haidri, R.A. ; Katti, C.P. ; Saxena, P.C.</creatorcontrib><description>Summary This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5006</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>acquisition delay ; Algorithms ; Cloud computing ; Production scheduling ; Resource scheduling ; stochastic tasks ; Task scheduling ; Virtual environments ; virtual machine ; Workflow ; workflow scheduling ; Workflow software</subject><ispartof>Concurrency and computation, 2019-04, Vol.31 (7), p.n/a</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</citedby><cites>FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</cites><orcidid>0000-0002-4631-1352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Haidri, R.A.</creatorcontrib><creatorcontrib>Katti, C.P.</creatorcontrib><creatorcontrib>Saxena, P.C.</creatorcontrib><title>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</title><title>Concurrency and computation</title><description>Summary This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.</description><subject>acquisition delay</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Production scheduling</subject><subject>Resource scheduling</subject><subject>stochastic tasks</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><subject>virtual machine</subject><subject>Workflow</subject><subject>workflow scheduling</subject><subject>Workflow software</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmaSyczs5ShXqCgC12HTC5t6nQyJhlLd_oGPqNPYmrFnatz-M_Hf-AD4ByjCUaIXMleT3KE2AEY4ZySDDE6PfzbCTsGJyGsEMIYUTwCH7UL8ev9UxujZbRvGiotVGs7nUKxEV7DEJ1cihCthEEutRrSdZFSL6JebKFxHm6cfzGt20DR962VIlrXBeg6-GZ9HEQL10IuU2eAtoOydYOC0q37IaamU3BkRBv02e8cg-eb2VN9l80fbu_r63kmSUVZpnQl8hwXeS6bypSGUY0rhlkjSiNLRgyWjBWq1IYw3AhU5lShgrJGCUWmU0rH4GLf23v3OugQ-coNvksvOcFlVSa2YIm63FPSuxC8Nrz3di38lmPEd4J5Esx3ghOa7dGNbfX2X47Xj7Mf_htEc4Em</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Haidri, R.A.</creator><creator>Katti, C.P.</creator><creator>Saxena, P.C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4631-1352</orcidid></search><sort><creationdate>20190410</creationdate><title>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</title><author>Haidri, R.A. ; Katti, C.P. ; Saxena, P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acquisition delay</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Production scheduling</topic><topic>Resource scheduling</topic><topic>stochastic tasks</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><topic>virtual machine</topic><topic>Workflow</topic><topic>workflow scheduling</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haidri, R.A.</creatorcontrib><creatorcontrib>Katti, C.P.</creatorcontrib><creatorcontrib>Saxena, P.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haidri, R.A.</au><au>Katti, C.P.</au><au>Saxena, P.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</atitle><jtitle>Concurrency and computation</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>31</volume><issue>7</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5006</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4631-1352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2019-04, Vol.31 (7), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2189873676
source Wiley Online Library Journals Frontfile Complete
subjects acquisition delay
Algorithms
Cloud computing
Production scheduling
Resource scheduling
stochastic tasks
Task scheduling
Virtual environments
virtual machine
Workflow
workflow scheduling
Workflow software
title Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%E2%80%90effective%20deadline%E2%80%90aware%20stochastic%20scheduling%20strategy%20for%20workflow%20applications%20on%20virtual%20machines%20in%20cloud%20computing&rft.jtitle=Concurrency%20and%20computation&rft.au=Haidri,%20R.A.&rft.date=2019-04-10&rft.volume=31&rft.issue=7&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5006&rft_dat=%3Cproquest_cross%3E2189873676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189873676&rft_id=info:pmid/&rfr_iscdi=true