Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing
Summary This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐c...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2019-04, Vol.31 (7), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 31 |
creator | Haidri, R.A. Katti, C.P. Saxena, P.C. |
description | Summary
This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow. |
doi_str_mv | 10.1002/cpe.5006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189873676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189873676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmaSyczs5ShXqCgC12HTC5t6nQyJhlLd_oGPqNPYmrFnatz-M_Hf-AD4ByjCUaIXMleT3KE2AEY4ZySDDE6PfzbCTsGJyGsEMIYUTwCH7UL8ev9UxujZbRvGiotVGs7nUKxEV7DEJ1cihCthEEutRrSdZFSL6JebKFxHm6cfzGt20DR962VIlrXBeg6-GZ9HEQL10IuU2eAtoOydYOC0q37IaamU3BkRBv02e8cg-eb2VN9l80fbu_r63kmSUVZpnQl8hwXeS6bypSGUY0rhlkjSiNLRgyWjBWq1IYw3AhU5lShgrJGCUWmU0rH4GLf23v3OugQ-coNvksvOcFlVSa2YIm63FPSuxC8Nrz3di38lmPEd4J5Esx3ghOa7dGNbfX2X47Xj7Mf_htEc4Em</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189873676</pqid></control><display><type>article</type><title>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Haidri, R.A. ; Katti, C.P. ; Saxena, P.C.</creator><creatorcontrib>Haidri, R.A. ; Katti, C.P. ; Saxena, P.C.</creatorcontrib><description>Summary
This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.5006</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>acquisition delay ; Algorithms ; Cloud computing ; Production scheduling ; Resource scheduling ; stochastic tasks ; Task scheduling ; Virtual environments ; virtual machine ; Workflow ; workflow scheduling ; Workflow software</subject><ispartof>Concurrency and computation, 2019-04, Vol.31 (7), p.n/a</ispartof><rights>2018 John Wiley & Sons, Ltd.</rights><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</citedby><cites>FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</cites><orcidid>0000-0002-4631-1352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.5006$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.5006$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Haidri, R.A.</creatorcontrib><creatorcontrib>Katti, C.P.</creatorcontrib><creatorcontrib>Saxena, P.C.</creatorcontrib><title>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</title><title>Concurrency and computation</title><description>Summary
This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.</description><subject>acquisition delay</subject><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Production scheduling</subject><subject>Resource scheduling</subject><subject>stochastic tasks</subject><subject>Task scheduling</subject><subject>Virtual environments</subject><subject>virtual machine</subject><subject>Workflow</subject><subject>workflow scheduling</subject><subject>Workflow software</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmaSyczs5ShXqCgC12HTC5t6nQyJhlLd_oGPqNPYmrFnatz-M_Hf-AD4ByjCUaIXMleT3KE2AEY4ZySDDE6PfzbCTsGJyGsEMIYUTwCH7UL8ev9UxujZbRvGiotVGs7nUKxEV7DEJ1cihCthEEutRrSdZFSL6JebKFxHm6cfzGt20DR962VIlrXBeg6-GZ9HEQL10IuU2eAtoOydYOC0q37IaamU3BkRBv02e8cg-eb2VN9l80fbu_r63kmSUVZpnQl8hwXeS6bypSGUY0rhlkjSiNLRgyWjBWq1IYw3AhU5lShgrJGCUWmU0rH4GLf23v3OugQ-coNvksvOcFlVSa2YIm63FPSuxC8Nrz3di38lmPEd4J5Esx3ghOa7dGNbfX2X47Xj7Mf_htEc4Em</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Haidri, R.A.</creator><creator>Katti, C.P.</creator><creator>Saxena, P.C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4631-1352</orcidid></search><sort><creationdate>20190410</creationdate><title>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</title><author>Haidri, R.A. ; Katti, C.P. ; Saxena, P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-de9a551755cb9f8f63e19616ba8fc862f1c667d8ef261ba0853d0736bdad24433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>acquisition delay</topic><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Production scheduling</topic><topic>Resource scheduling</topic><topic>stochastic tasks</topic><topic>Task scheduling</topic><topic>Virtual environments</topic><topic>virtual machine</topic><topic>Workflow</topic><topic>workflow scheduling</topic><topic>Workflow software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haidri, R.A.</creatorcontrib><creatorcontrib>Katti, C.P.</creatorcontrib><creatorcontrib>Saxena, P.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haidri, R.A.</au><au>Katti, C.P.</au><au>Saxena, P.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing</atitle><jtitle>Concurrency and computation</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>31</volume><issue>7</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary
This paper addresses the problems in scheduling the workflow tasks on cloud computing systems such as minimizing the total price for execution (TPE) and total execution time (TET) of the workflow while meeting the deadline constraints in a stochastic environment. Scheduling such precedence‐constrained stochastic tasks on the cloud with virtual machines of different computing capabilities is a difficult problem. However, instead of TPE and TET, the virtual machine's acquisition delay is one of the primary cloud's characteristics. The current paper first formulates the problem as a stochastic scheduling model on cloud. Then, a stochastic cost‐effective deadline‐aware (S‐CEDA) resource scheduler is developed. S‐CEDA incorporates the expected value and variance of the task's processing time and inter‐task communication time into the workflow scheduling. The experimental results show that S‐CEDA outperforms the existing state‐of‐the‐art algorithms such as stochastic heterogeneous earliest finish time (SHEFT) and cost‐effective deadline‐aware (CEDA) scheduling algorithms in terms of the TPE and TET of the workflow.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.5006</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4631-1352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2019-04, Vol.31 (7), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2189873676 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | acquisition delay Algorithms Cloud computing Production scheduling Resource scheduling stochastic tasks Task scheduling Virtual environments virtual machine Workflow workflow scheduling Workflow software |
title | Cost‐effective deadline‐aware stochastic scheduling strategy for workflow applications on virtual machines in cloud computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%E2%80%90effective%20deadline%E2%80%90aware%20stochastic%20scheduling%20strategy%20for%20workflow%20applications%20on%20virtual%20machines%20in%20cloud%20computing&rft.jtitle=Concurrency%20and%20computation&rft.au=Haidri,%20R.A.&rft.date=2019-04-10&rft.volume=31&rft.issue=7&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.5006&rft_dat=%3Cproquest_cross%3E2189873676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189873676&rft_id=info:pmid/&rfr_iscdi=true |