Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments

Natural attenuation is very often the remediation method of necessity, rather than choice, for beach environments impacted by offshore exploration/drilling accidents. Robust methods that can be efficiently utilized in difficult to access and ecologically sensitive areas are needed for the long‐term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2019-02, Vol.124 (2), p.353-366
Hauptverfasser: Kimak, C., Ntarlagiannis, D., Slater, L. D., Atekwana, E. A., Beaver, C. L., Rossbach, S., Porter, A., Ustra, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 2
container_start_page 353
container_title Journal of geophysical research. Biogeosciences
container_volume 124
creator Kimak, C.
Ntarlagiannis, D.
Slater, L. D.
Atekwana, E. A.
Beaver, C. L.
Rossbach, S.
Porter, A.
Ustra, A.
description Natural attenuation is very often the remediation method of necessity, rather than choice, for beach environments impacted by offshore exploration/drilling accidents. Robust methods that can be efficiently utilized in difficult to access and ecologically sensitive areas are needed for the long‐term monitoring of such degradation processes. A prime candidate for such a monitoring tool is the spectral induced polarization (SIP) method, a geophysical technique successfully used for characterization and monitoring of hydrocarbon degradation in freshwater environments. In this laboratory experiment the SIP method successfully monitored the natural degradation of beach sediments impacted by the Deepwater Horizon oil spill. Using the SIP, we were able to differentiate between biotic (e.g., microbial driven) and abiotic (e.g., dilution) degradation processes and infer degradation rates. To our knowledge this is the first effort to use the SIP method as a monitoring aid in high salinity environments. Plain Language Summary Offshore drilling/exploration accidents can result in the contamination of remote and ecologically sensitive areas. In most cases the only realistic remediation choice is natural degradation. In this paper we discuss the use of a noninvasive geophysical method, termed spectral induced polarization, as a monitoring tool of oil contamination degradation in brackish environments. The presented laboratory works supports the suitability of the method for monitoring not only the progress of degradation but also any microbial related degradation processes. Key Points SIP is sensitive to hydrocarbon biodegradation processes in highly conductive environments Long‐term geophysical monitoring of natural attenuation of hydrocarbon is demonstrated
doi_str_mv 10.1029/2018JG004561
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189805262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189805262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3300-23b2a754c26c7a539b42589da05ee700649951a0e0bfbbb251dda806119c31b53</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOObe_AMKvlq9S5quedQxW8dEEPW1JG26ZXTJTLpJ_3srE_HJe_nujh_3cR8hlwg3CFTcUsBskQMkPMUTMqKYijgTKZ7-9pydk0kIGxgqG1aII_Kea7db98FUso2enDWd88auItdERV97V0mvnI3ujav1ystadmYYjY0Ks1q3fTRztt5XnTnoaG4Pxju71bYLF-SskW3Qkx8dk7eH-eusiJfP-ePsbhlLxgBiyhSVU55UNK2mkjOhEsozUUvgWk8B0kQIjhI0qEYpRTnWtcwgRRQVQ8XZmFwd7-68-9jr0JUbt_d2sCwpZiIDTlM6UNdHqvIuBK-bcufNVvq-RCi_wyv_hjfg7Ih_mlb3_7LlIn_JKQ7PsC-2em-5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189805262</pqid></control><display><type>article</type><title>Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kimak, C. ; Ntarlagiannis, D. ; Slater, L. D. ; Atekwana, E. A. ; Beaver, C. L. ; Rossbach, S. ; Porter, A. ; Ustra, A.</creator><creatorcontrib>Kimak, C. ; Ntarlagiannis, D. ; Slater, L. D. ; Atekwana, E. A. ; Beaver, C. L. ; Rossbach, S. ; Porter, A. ; Ustra, A.</creatorcontrib><description>Natural attenuation is very often the remediation method of necessity, rather than choice, for beach environments impacted by offshore exploration/drilling accidents. Robust methods that can be efficiently utilized in difficult to access and ecologically sensitive areas are needed for the long‐term monitoring of such degradation processes. A prime candidate for such a monitoring tool is the spectral induced polarization (SIP) method, a geophysical technique successfully used for characterization and monitoring of hydrocarbon degradation in freshwater environments. In this laboratory experiment the SIP method successfully monitored the natural degradation of beach sediments impacted by the Deepwater Horizon oil spill. Using the SIP, we were able to differentiate between biotic (e.g., microbial driven) and abiotic (e.g., dilution) degradation processes and infer degradation rates. To our knowledge this is the first effort to use the SIP method as a monitoring aid in high salinity environments. Plain Language Summary Offshore drilling/exploration accidents can result in the contamination of remote and ecologically sensitive areas. In most cases the only realistic remediation choice is natural degradation. In this paper we discuss the use of a noninvasive geophysical method, termed spectral induced polarization, as a monitoring tool of oil contamination degradation in brackish environments. The presented laboratory works supports the suitability of the method for monitoring not only the progress of degradation but also any microbial related degradation processes. Key Points SIP is sensitive to hydrocarbon biodegradation processes in highly conductive environments Long‐term geophysical monitoring of natural attenuation of hydrocarbon is demonstrated</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1029/2018JG004561</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accidents ; Attenuation ; Beaches ; Biodegradation ; biogeophysics ; bioremediation ; Contamination ; Deep water ; Dilution ; Drilling ; Ecological effects ; Ecological monitoring ; Environmental degradation ; Environmental impact ; Environmental monitoring ; Exploration ; Exploratory drilling ; Freshwater ; Freshwater environments ; Geophysics ; Hydrocarbons ; Induced polarization ; Inland water environment ; Laboratories ; Methods ; Microorganisms ; Monitoring ; Monitoring methods ; Natural attenuation ; Offshore ; Offshore drilling rigs ; Oil pollution ; oil spill ; Oil spills ; Polarization ; Remediation ; Sediments ; SIP</subject><ispartof>Journal of geophysical research. Biogeosciences, 2019-02, Vol.124 (2), p.353-366</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3300-23b2a754c26c7a539b42589da05ee700649951a0e0bfbbb251dda806119c31b53</citedby><cites>FETCH-LOGICAL-a3300-23b2a754c26c7a539b42589da05ee700649951a0e0bfbbb251dda806119c31b53</cites><orcidid>0000-0002-5353-372X ; 0000-0003-0292-746X ; 0000-0002-5230-1775 ; 0000-0003-1424-4068 ; 0000-0002-0567-4237 ; 0000-0003-0349-0618 ; 0000-0003-1395-1887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JG004561$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JG004561$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Kimak, C.</creatorcontrib><creatorcontrib>Ntarlagiannis, D.</creatorcontrib><creatorcontrib>Slater, L. D.</creatorcontrib><creatorcontrib>Atekwana, E. A.</creatorcontrib><creatorcontrib>Beaver, C. L.</creatorcontrib><creatorcontrib>Rossbach, S.</creatorcontrib><creatorcontrib>Porter, A.</creatorcontrib><creatorcontrib>Ustra, A.</creatorcontrib><title>Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments</title><title>Journal of geophysical research. Biogeosciences</title><description>Natural attenuation is very often the remediation method of necessity, rather than choice, for beach environments impacted by offshore exploration/drilling accidents. Robust methods that can be efficiently utilized in difficult to access and ecologically sensitive areas are needed for the long‐term monitoring of such degradation processes. A prime candidate for such a monitoring tool is the spectral induced polarization (SIP) method, a geophysical technique successfully used for characterization and monitoring of hydrocarbon degradation in freshwater environments. In this laboratory experiment the SIP method successfully monitored the natural degradation of beach sediments impacted by the Deepwater Horizon oil spill. Using the SIP, we were able to differentiate between biotic (e.g., microbial driven) and abiotic (e.g., dilution) degradation processes and infer degradation rates. To our knowledge this is the first effort to use the SIP method as a monitoring aid in high salinity environments. Plain Language Summary Offshore drilling/exploration accidents can result in the contamination of remote and ecologically sensitive areas. In most cases the only realistic remediation choice is natural degradation. In this paper we discuss the use of a noninvasive geophysical method, termed spectral induced polarization, as a monitoring tool of oil contamination degradation in brackish environments. The presented laboratory works supports the suitability of the method for monitoring not only the progress of degradation but also any microbial related degradation processes. Key Points SIP is sensitive to hydrocarbon biodegradation processes in highly conductive environments Long‐term geophysical monitoring of natural attenuation of hydrocarbon is demonstrated</description><subject>Accidents</subject><subject>Attenuation</subject><subject>Beaches</subject><subject>Biodegradation</subject><subject>biogeophysics</subject><subject>bioremediation</subject><subject>Contamination</subject><subject>Deep water</subject><subject>Dilution</subject><subject>Drilling</subject><subject>Ecological effects</subject><subject>Ecological monitoring</subject><subject>Environmental degradation</subject><subject>Environmental impact</subject><subject>Environmental monitoring</subject><subject>Exploration</subject><subject>Exploratory drilling</subject><subject>Freshwater</subject><subject>Freshwater environments</subject><subject>Geophysics</subject><subject>Hydrocarbons</subject><subject>Induced polarization</subject><subject>Inland water environment</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Natural attenuation</subject><subject>Offshore</subject><subject>Offshore drilling rigs</subject><subject>Oil pollution</subject><subject>oil spill</subject><subject>Oil spills</subject><subject>Polarization</subject><subject>Remediation</subject><subject>Sediments</subject><subject>SIP</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kNFLwzAQxoMoOObe_AMKvlq9S5quedQxW8dEEPW1JG26ZXTJTLpJ_3srE_HJe_nujh_3cR8hlwg3CFTcUsBskQMkPMUTMqKYijgTKZ7-9pydk0kIGxgqG1aII_Kea7db98FUso2enDWd88auItdERV97V0mvnI3ujav1ystadmYYjY0Ks1q3fTRztt5XnTnoaG4Pxju71bYLF-SskW3Qkx8dk7eH-eusiJfP-ePsbhlLxgBiyhSVU55UNK2mkjOhEsozUUvgWk8B0kQIjhI0qEYpRTnWtcwgRRQVQ8XZmFwd7-68-9jr0JUbt_d2sCwpZiIDTlM6UNdHqvIuBK-bcufNVvq-RCi_wyv_hjfg7Ih_mlb3_7LlIn_JKQ7PsC-2em-5</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Kimak, C.</creator><creator>Ntarlagiannis, D.</creator><creator>Slater, L. D.</creator><creator>Atekwana, E. A.</creator><creator>Beaver, C. L.</creator><creator>Rossbach, S.</creator><creator>Porter, A.</creator><creator>Ustra, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-5353-372X</orcidid><orcidid>https://orcid.org/0000-0003-0292-746X</orcidid><orcidid>https://orcid.org/0000-0002-5230-1775</orcidid><orcidid>https://orcid.org/0000-0003-1424-4068</orcidid><orcidid>https://orcid.org/0000-0002-0567-4237</orcidid><orcidid>https://orcid.org/0000-0003-0349-0618</orcidid><orcidid>https://orcid.org/0000-0003-1395-1887</orcidid></search><sort><creationdate>201902</creationdate><title>Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments</title><author>Kimak, C. ; Ntarlagiannis, D. ; Slater, L. D. ; Atekwana, E. A. ; Beaver, C. L. ; Rossbach, S. ; Porter, A. ; Ustra, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3300-23b2a754c26c7a539b42589da05ee700649951a0e0bfbbb251dda806119c31b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Attenuation</topic><topic>Beaches</topic><topic>Biodegradation</topic><topic>biogeophysics</topic><topic>bioremediation</topic><topic>Contamination</topic><topic>Deep water</topic><topic>Dilution</topic><topic>Drilling</topic><topic>Ecological effects</topic><topic>Ecological monitoring</topic><topic>Environmental degradation</topic><topic>Environmental impact</topic><topic>Environmental monitoring</topic><topic>Exploration</topic><topic>Exploratory drilling</topic><topic>Freshwater</topic><topic>Freshwater environments</topic><topic>Geophysics</topic><topic>Hydrocarbons</topic><topic>Induced polarization</topic><topic>Inland water environment</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Natural attenuation</topic><topic>Offshore</topic><topic>Offshore drilling rigs</topic><topic>Oil pollution</topic><topic>oil spill</topic><topic>Oil spills</topic><topic>Polarization</topic><topic>Remediation</topic><topic>Sediments</topic><topic>SIP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimak, C.</creatorcontrib><creatorcontrib>Ntarlagiannis, D.</creatorcontrib><creatorcontrib>Slater, L. D.</creatorcontrib><creatorcontrib>Atekwana, E. A.</creatorcontrib><creatorcontrib>Beaver, C. L.</creatorcontrib><creatorcontrib>Rossbach, S.</creatorcontrib><creatorcontrib>Porter, A.</creatorcontrib><creatorcontrib>Ustra, A.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimak, C.</au><au>Ntarlagiannis, D.</au><au>Slater, L. D.</au><au>Atekwana, E. A.</au><au>Beaver, C. L.</au><au>Rossbach, S.</au><au>Porter, A.</au><au>Ustra, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><date>2019-02</date><risdate>2019</risdate><volume>124</volume><issue>2</issue><spage>353</spage><epage>366</epage><pages>353-366</pages><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Natural attenuation is very often the remediation method of necessity, rather than choice, for beach environments impacted by offshore exploration/drilling accidents. Robust methods that can be efficiently utilized in difficult to access and ecologically sensitive areas are needed for the long‐term monitoring of such degradation processes. A prime candidate for such a monitoring tool is the spectral induced polarization (SIP) method, a geophysical technique successfully used for characterization and monitoring of hydrocarbon degradation in freshwater environments. In this laboratory experiment the SIP method successfully monitored the natural degradation of beach sediments impacted by the Deepwater Horizon oil spill. Using the SIP, we were able to differentiate between biotic (e.g., microbial driven) and abiotic (e.g., dilution) degradation processes and infer degradation rates. To our knowledge this is the first effort to use the SIP method as a monitoring aid in high salinity environments. Plain Language Summary Offshore drilling/exploration accidents can result in the contamination of remote and ecologically sensitive areas. In most cases the only realistic remediation choice is natural degradation. In this paper we discuss the use of a noninvasive geophysical method, termed spectral induced polarization, as a monitoring tool of oil contamination degradation in brackish environments. The presented laboratory works supports the suitability of the method for monitoring not only the progress of degradation but also any microbial related degradation processes. Key Points SIP is sensitive to hydrocarbon biodegradation processes in highly conductive environments Long‐term geophysical monitoring of natural attenuation of hydrocarbon is demonstrated</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JG004561</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5353-372X</orcidid><orcidid>https://orcid.org/0000-0003-0292-746X</orcidid><orcidid>https://orcid.org/0000-0002-5230-1775</orcidid><orcidid>https://orcid.org/0000-0003-1424-4068</orcidid><orcidid>https://orcid.org/0000-0002-0567-4237</orcidid><orcidid>https://orcid.org/0000-0003-0349-0618</orcidid><orcidid>https://orcid.org/0000-0003-1395-1887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-8953
ispartof Journal of geophysical research. Biogeosciences, 2019-02, Vol.124 (2), p.353-366
issn 2169-8953
2169-8961
language eng
recordid cdi_proquest_journals_2189805262
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Accidents
Attenuation
Beaches
Biodegradation
biogeophysics
bioremediation
Contamination
Deep water
Dilution
Drilling
Ecological effects
Ecological monitoring
Environmental degradation
Environmental impact
Environmental monitoring
Exploration
Exploratory drilling
Freshwater
Freshwater environments
Geophysics
Hydrocarbons
Induced polarization
Inland water environment
Laboratories
Methods
Microorganisms
Monitoring
Monitoring methods
Natural attenuation
Offshore
Offshore drilling rigs
Oil pollution
oil spill
Oil spills
Polarization
Remediation
Sediments
SIP
title Geophysical Monitoring of Hydrocarbon Biodegradation in Highly Conductive Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geophysical%20Monitoring%20of%20Hydrocarbon%20Biodegradation%20in%20Highly%20Conductive%20Environments&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Kimak,%20C.&rft.date=2019-02&rft.volume=124&rft.issue=2&rft.spage=353&rft.epage=366&rft.pages=353-366&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1029/2018JG004561&rft_dat=%3Cproquest_cross%3E2189805262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189805262&rft_id=info:pmid/&rfr_iscdi=true