Directional Sharp-Point Failure Mechanism of Rocks Surrounding Underground Circular Cavities Subjected to Large-Scale Failure

Large-scale expansion of failure areas in rocks surrounding underground cavities causes severe destruction of the underground space and may trigger serious disasters. To study the large-scale failure mechanism and expansion laws of rocks surrounding underground cavities, we performed a theoretical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-19
Hauptverfasser: Ma, Zhen-kai, Gao, Xu, Zhao, Zhiqiang, Guo, Xiao-fei, Ma, Nian-jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale expansion of failure areas in rocks surrounding underground cavities causes severe destruction of the underground space and may trigger serious disasters. To study the large-scale failure mechanism and expansion laws of rocks surrounding underground cavities, we performed a theoretical study of the distribution characteristics of the stress field around a circular cavity and determined the directional sharp-point failure mechanism by analysing the stress destructive power using the three elements of the Mohr circle. Results showed that, along the circumferential direction, the stress destructive power increases first and then decreases, showing a sharp-angular distribution. Rock with any properties will suffer priority damage at the stress sharp point. The direction criterion of the stress sharp points was proposed, and the direction of these points showed a convergent behaviour in the radial direction of the cavity, tending to be stable at 40°-50° beyond five times the cavity radius. In addition, the results were verified by FLAC3D numerical simulation. The theoretical analysis for the ideal circular cavity may provide references to study the damage laws of rocks surrounding other irregular-shaped space, as well as providing a theoretical basis for the prevention and control of underground engineering disasters.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/1415387