Online signature verification based on string edit distance
Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only fe...
Gespeichert in:
Veröffentlicht in: | International journal on document analysis and recognition 2019-03, Vol.22 (1), p.41-54 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | International journal on document analysis and recognition |
container_volume | 22 |
creator | Riesen, Kaspar Schmidt, Roman |
description | Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance. |
doi_str_mv | 10.1007/s10032-019-00316-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189208888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189208888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxFr9Ap428YwyQIGNJ9P4L2nSi54Jy0JDU9kKrInfXuoavTmHmXd4bybzQ-gSyDUQIm9y7YxiAi2uAgSGIzQDzhimii6OfzVjp-gs5y0hIIVUM3S7jrsQXZPDJpoyJtd8uBR8sKaEITadya5vqsglhbhpXB9K04dcTLTuHJ14s8vu4mfO0evD_cvyCa_Wj8_LuxW2DNqCHXWiFb61whuuFFd8IUgrLGc95UwY6qGThoGVirqOS6KYXFDBZGckCOnZHF1Ne_dpeB9dLno7jCnWk5qCailRtaqLTi6bhpyT83qfwptJnxqIPkDSEyRdIelvSBpqiE2hvD_859Lf6n9SX8_waCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189208888</pqid></control><display><type>article</type><title>Online signature verification based on string edit distance</title><source>SpringerLink Journals - AutoHoldings</source><creator>Riesen, Kaspar ; Schmidt, Roman</creator><creatorcontrib>Riesen, Kaspar ; Schmidt, Roman</creatorcontrib><description>Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.</description><identifier>ISSN: 1433-2833</identifier><identifier>EISSN: 1433-2825</identifier><identifier>DOI: 10.1007/s10032-019-00316-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biometrics ; Computer Science ; Digital signatures ; Handwriting ; Image Processing and Computer Vision ; Original Paper ; Pattern Recognition ; Signatures ; String matching</subject><ispartof>International journal on document analysis and recognition, 2019-03, Vol.22 (1), p.41-54</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</citedby><cites>FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</cites><orcidid>0000-0002-9145-3157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10032-019-00316-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10032-019-00316-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Riesen, Kaspar</creatorcontrib><creatorcontrib>Schmidt, Roman</creatorcontrib><title>Online signature verification based on string edit distance</title><title>International journal on document analysis and recognition</title><addtitle>IJDAR</addtitle><description>Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.</description><subject>Algorithms</subject><subject>Biometrics</subject><subject>Computer Science</subject><subject>Digital signatures</subject><subject>Handwriting</subject><subject>Image Processing and Computer Vision</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Signatures</subject><subject>String matching</subject><issn>1433-2833</issn><issn>1433-2825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxFr9Ap428YwyQIGNJ9P4L2nSi54Jy0JDU9kKrInfXuoavTmHmXd4bybzQ-gSyDUQIm9y7YxiAi2uAgSGIzQDzhimii6OfzVjp-gs5y0hIIVUM3S7jrsQXZPDJpoyJtd8uBR8sKaEITadya5vqsglhbhpXB9K04dcTLTuHJ14s8vu4mfO0evD_cvyCa_Wj8_LuxW2DNqCHXWiFb61whuuFFd8IUgrLGc95UwY6qGThoGVirqOS6KYXFDBZGckCOnZHF1Ne_dpeB9dLno7jCnWk5qCailRtaqLTi6bhpyT83qfwptJnxqIPkDSEyRdIelvSBpqiE2hvD_859Lf6n9SX8_waCs</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Riesen, Kaspar</creator><creator>Schmidt, Roman</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9145-3157</orcidid></search><sort><creationdate>20190307</creationdate><title>Online signature verification based on string edit distance</title><author>Riesen, Kaspar ; Schmidt, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biometrics</topic><topic>Computer Science</topic><topic>Digital signatures</topic><topic>Handwriting</topic><topic>Image Processing and Computer Vision</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Signatures</topic><topic>String matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riesen, Kaspar</creatorcontrib><creatorcontrib>Schmidt, Roman</creatorcontrib><collection>CrossRef</collection><jtitle>International journal on document analysis and recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riesen, Kaspar</au><au>Schmidt, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online signature verification based on string edit distance</atitle><jtitle>International journal on document analysis and recognition</jtitle><stitle>IJDAR</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>22</volume><issue>1</issue><spage>41</spage><epage>54</epage><pages>41-54</pages><issn>1433-2833</issn><eissn>1433-2825</eissn><abstract>Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10032-019-00316-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9145-3157</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-2833 |
ispartof | International journal on document analysis and recognition, 2019-03, Vol.22 (1), p.41-54 |
issn | 1433-2833 1433-2825 |
language | eng |
recordid | cdi_proquest_journals_2189208888 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Biometrics Computer Science Digital signatures Handwriting Image Processing and Computer Vision Original Paper Pattern Recognition Signatures String matching |
title | Online signature verification based on string edit distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20signature%20verification%20based%20on%20string%20edit%20distance&rft.jtitle=International%20journal%20on%20document%20analysis%20and%20recognition&rft.au=Riesen,%20Kaspar&rft.date=2019-03-07&rft.volume=22&rft.issue=1&rft.spage=41&rft.epage=54&rft.pages=41-54&rft.issn=1433-2833&rft.eissn=1433-2825&rft_id=info:doi/10.1007/s10032-019-00316-1&rft_dat=%3Cproquest_cross%3E2189208888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189208888&rft_id=info:pmid/&rfr_iscdi=true |