Online signature verification based on string edit distance

Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on document analysis and recognition 2019-03, Vol.22 (1), p.41-54
Hauptverfasser: Riesen, Kaspar, Schmidt, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 41
container_title International journal on document analysis and recognition
container_volume 22
creator Riesen, Kaspar
Schmidt, Roman
description Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.
doi_str_mv 10.1007/s10032-019-00316-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189208888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189208888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxFr9Ap428YwyQIGNJ9P4L2nSi54Jy0JDU9kKrInfXuoavTmHmXd4bybzQ-gSyDUQIm9y7YxiAi2uAgSGIzQDzhimii6OfzVjp-gs5y0hIIVUM3S7jrsQXZPDJpoyJtd8uBR8sKaEITadya5vqsglhbhpXB9K04dcTLTuHJ14s8vu4mfO0evD_cvyCa_Wj8_LuxW2DNqCHXWiFb61whuuFFd8IUgrLGc95UwY6qGThoGVirqOS6KYXFDBZGckCOnZHF1Ne_dpeB9dLno7jCnWk5qCailRtaqLTi6bhpyT83qfwptJnxqIPkDSEyRdIelvSBpqiE2hvD_859Lf6n9SX8_waCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189208888</pqid></control><display><type>article</type><title>Online signature verification based on string edit distance</title><source>SpringerLink Journals - AutoHoldings</source><creator>Riesen, Kaspar ; Schmidt, Roman</creator><creatorcontrib>Riesen, Kaspar ; Schmidt, Roman</creatorcontrib><description>Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.</description><identifier>ISSN: 1433-2833</identifier><identifier>EISSN: 1433-2825</identifier><identifier>DOI: 10.1007/s10032-019-00316-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biometrics ; Computer Science ; Digital signatures ; Handwriting ; Image Processing and Computer Vision ; Original Paper ; Pattern Recognition ; Signatures ; String matching</subject><ispartof>International journal on document analysis and recognition, 2019-03, Vol.22 (1), p.41-54</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</citedby><cites>FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</cites><orcidid>0000-0002-9145-3157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10032-019-00316-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10032-019-00316-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Riesen, Kaspar</creatorcontrib><creatorcontrib>Schmidt, Roman</creatorcontrib><title>Online signature verification based on string edit distance</title><title>International journal on document analysis and recognition</title><addtitle>IJDAR</addtitle><description>Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.</description><subject>Algorithms</subject><subject>Biometrics</subject><subject>Computer Science</subject><subject>Digital signatures</subject><subject>Handwriting</subject><subject>Image Processing and Computer Vision</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Signatures</subject><subject>String matching</subject><issn>1433-2833</issn><issn>1433-2825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxFr9Ap428YwyQIGNJ9P4L2nSi54Jy0JDU9kKrInfXuoavTmHmXd4bybzQ-gSyDUQIm9y7YxiAi2uAgSGIzQDzhimii6OfzVjp-gs5y0hIIVUM3S7jrsQXZPDJpoyJtd8uBR8sKaEITadya5vqsglhbhpXB9K04dcTLTuHJ14s8vu4mfO0evD_cvyCa_Wj8_LuxW2DNqCHXWiFb61whuuFFd8IUgrLGc95UwY6qGThoGVirqOS6KYXFDBZGckCOnZHF1Ne_dpeB9dLno7jCnWk5qCailRtaqLTi6bhpyT83qfwptJnxqIPkDSEyRdIelvSBpqiE2hvD_859Lf6n9SX8_waCs</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Riesen, Kaspar</creator><creator>Schmidt, Roman</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9145-3157</orcidid></search><sort><creationdate>20190307</creationdate><title>Online signature verification based on string edit distance</title><author>Riesen, Kaspar ; Schmidt, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2e696f9c6fa48848456096c43d2436a2f1b7a31c782eb47083752637ba7167f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biometrics</topic><topic>Computer Science</topic><topic>Digital signatures</topic><topic>Handwriting</topic><topic>Image Processing and Computer Vision</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Signatures</topic><topic>String matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riesen, Kaspar</creatorcontrib><creatorcontrib>Schmidt, Roman</creatorcontrib><collection>CrossRef</collection><jtitle>International journal on document analysis and recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riesen, Kaspar</au><au>Schmidt, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online signature verification based on string edit distance</atitle><jtitle>International journal on document analysis and recognition</jtitle><stitle>IJDAR</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>22</volume><issue>1</issue><spage>41</spage><epage>54</epage><pages>41-54</pages><issn>1433-2833</issn><eissn>1433-2825</eissn><abstract>Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10032-019-00316-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9145-3157</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-2833
ispartof International journal on document analysis and recognition, 2019-03, Vol.22 (1), p.41-54
issn 1433-2833
1433-2825
language eng
recordid cdi_proquest_journals_2189208888
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Biometrics
Computer Science
Digital signatures
Handwriting
Image Processing and Computer Vision
Original Paper
Pattern Recognition
Signatures
String matching
title Online signature verification based on string edit distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20signature%20verification%20based%20on%20string%20edit%20distance&rft.jtitle=International%20journal%20on%20document%20analysis%20and%20recognition&rft.au=Riesen,%20Kaspar&rft.date=2019-03-07&rft.volume=22&rft.issue=1&rft.spage=41&rft.epage=54&rft.pages=41-54&rft.issn=1433-2833&rft.eissn=1433-2825&rft_id=info:doi/10.1007/s10032-019-00316-1&rft_dat=%3Cproquest_cross%3E2189208888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189208888&rft_id=info:pmid/&rfr_iscdi=true